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Preface 

On behalf of the program and organizing committee members of this conference, we 
are pleased to present you with the proceedings of the 12th Asia-Pacific Computer 
Systems Architecture Conference (ACSAC 2007), which was hosted in Seoul, Korea 
on August 23-25, 2007. This conference has traditionally been a forum for leading 
researchers in the Asian, American and Oceanian regions to share recent progress and 
the latest results in both architectural and system issues. In the past few years the con-
ference has become more international in the sense that the geographic origin of par-
ticipants has become broader to include researchers from all around the world, includ-
ing Europe and the Middle East. 

This year, we received 92 paper submissions. Each submission was reviewed by at 
least three primary reviewers along with up to three secondary reviewers. The total 
number of completed reviews reached 333, giving each submission 3.6 reviews on 
average. All the reviews were carefully examined during the paper selection process, 
and finally 26 papers were accepted, resulting in an acceptance rate of about 28%. The 
selected papers encompass a wide range of topics, with much emphasis on hardware 
and software techniques for state-of-the-art multicore and multithreaded architectures. 
In addition to the regular papers, the technical program of the conference included 
eight invited papers from world-class renowned researchers and featured two keynotes 
by Pen-Chung Yew (University of Minnesota) and Kunio Uchiyama (Hitachi), ad-
dressing a compiler framework for speculative multithreading and power-efficient 
heterogeneous multicore chip development, respectively. We sincerely hope that the 
proceedings will serve as a valuable reference for researchers and developers alike. 

Putting together ACSAC 2007 was a team effort. First of all, we would like to ex-
press our special gratitude to the authors and speakers for providing the contents of 
the program. We would also like to thank the program committee members and exter-
nal reviewers for diligently reviewing the papers and providing suggestions for their 
improvements. We believe that you will find the outcome of their efforts in this book. 
In addition, we extend our thanks to the organizing committee members and student 
volunteers, who contributed enormously to various aspects of conference administra-
tion. Finally, we would like to express special thanks to Chris Jesshope and Jinling 
Xue for sharing their experience and offering fruitful feedback in the early stages of 
preparing the conference. 

June 2007                                                                                                        Lynn Choi 
Yunheung Paek 

Sangyeun Cho 
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A Compiler Framework for Supporting Speculative 
Multicore Processors 

Pen-Chung Yew 

University of Minnesota at Twin Cities 

 
 
As multi-core technology is currently being deployed in computer industry primarily 
to limit power consumption and improve throughput, continued performance 
improvement of a single application on such systems remains an important and 
challenging task. Because of the shortened on-chip communication latency between 
cores, using thread-level parallelism (TLP) to improve the number of instructions 
executed per clock cycle, i.e., to improve ILP performance, has shown to be effective 
for many general-purpose applications. However, because of the program 
characteristics of these applications, effective speculative schemes at both thread- and 
instruction-level are crucial.  

Processors that support speculative multithreading have been proposed for 
sometime now. However, efforts have only begun recently to develop compilation 
techniques for this type of processors. Some of these techniques would require 
efficient architectural support. The jury is still out on how much performance 
improvement could be achieved for general-purpose applications on this kind of 
architectures.  

In this talk, we focus on a compiler framework that supports thread-level 
parallelism with the help of control and data speculation for general-purpose 
applications. This compiler framework has been implemented on the Open64 
compiler that includes support for efficient data dependence and alias profiling, loop 
selection schemes, as well as speculative compiler optimizations and effective 
recovery code generation schemes to exploit thread-level parallelism in loops and the 
remaining code regions. 



L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 2–3, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Power-Efficient Heterogeneous Multicore Technology for 
Digital Convergence 

Kunio Uchiyama 

Hitachi, Ltd 

 
 
In recent mobile phones, car navigation systems, digital TVs, and other consumer 
electronic devices, there is a trend toward digital convergence in which a single 
device has the ability to process various kinds of applications. At the same time, 
considering the processing of media content, these devices must be capable of 
encoding and decoding video images and audio data based on MPEG2, MPEG4, 
H.264, VC-1, MP3, AAC, WMA, RealAudio, and other formats. Moreover, the latest 
DVD recorders have the ability to automatically generate digests of video images by 
using audio and image recognition technology. These kinds of digital convergence 
devices must be able to flexibly process various kinds of data—media, recognition, 
data, communications, and so on—and the SoC (System-on-Chip) that is embedded in 
the devices must deliver superior performance while consuming very small power. 

To meet these needs, a power-efficient heterogeneous multi-core technology for 
the SoC used in consumer electronic devices has been developed. Primary objectives 
in developing this technology are to: (1) establish a robust heterogeneous multicore 
architecture that integrates a number of different types of power-efficient processor 
cores; (2) incorporate dynamic reconfigurable processors to leverage parallelism at 
the operation level; and (3) create a new software development environment for 
efficiently developing programs tailored for the heterogeneous multicore architecture. 
This combination of attributes will give us the superior performance/power ratio and 
flexibility, while satisfying the enormous demand for digital convergence devices.  

The power-thrifty processors used in the heterogeneous multicore architecture 
essentially include a local memory and an intelligent data transfer unit. Each local 
memory functions as a distributed shared memory for the entire chip. Processing is 
speeded up by enabling operations within processors in parallel with data transfers 
between processors. Dynamic reconfigurable processors called Flexible Engines 
(FEs) have been implemented as a special type of processor core. The FE executes 
various arithmetic algorithms fast while dynamically changing the functions and 
interconnections among 32 arithmetic elements.  

A prototype heterogeneous multicore chip has been developed using 90nm 
technology based on the architecture described above. Four low-power CPU cores are 
integrated along with two FEs on the 96mm2 chip. The CPU core operates at 600 
MHz and has a performance of 1.08 GIPS or 4.2 GFLOPS, while the FE operates at 
300 MHz, and can perform up to 19.2 GOPS. The chip as a whole delivers a 
performance of 4.32 GIPS, 16.8 GOPS, and 38.4 GOPS with a power dissipation of 
less than several watts.  

When a program is executed on the heterogeneous multicore chip, the program is 
divided up into sub-programs, which are processed by the processor cores on the chip 
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that are best suited to the task based on the attributes of each sub-program part. 
Multimedia programs such as encoding audio data have been executed on various 
combinations of CPUs and FEs, and the performance and the power consumption of 
the various configurations have been evaluated.  

A new software development environment has been created for the efficient 
development of programs specifically tailored for the heterogeneous multicore 
architecture. Using the new platform, programs are broken up into sub-program parts. 
The object code for the portions executed by CPU cores is generated using a usual 
compiler. An FE compiler has been developed for the sub-program parts executed by 
FEs, and the compiler generates configuration data and sequence control codes 
tailored for the FEs. A graphical interface editor for optimizing FE libraries has also 
been developed. It not only enables programmers to write FE programs directly but 
also enables the programs to be verified by simulation.  

A part of the introduced research has been supported by NEDO “Advanced 
heterogeneous multiprocessor,” “Multicore processors for real-time consumer 
electronics,” and “Heterogeneous multi-core technology for information appliances.” 
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StarDBT: An Efficient Multi-platform Dynamic Binary 
Translation System 

Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R. Nair, Mauricio Breternitz Jr., 
Zhiwei Ying, and Youfeng Wu 

Programming Systems Lab, Intel Corporation 
2200 Mission College Blvd 

Santa Clara, CA 95052, USA 
{cheng.c.wang,shiliang.hu,ho-seop.kim,sreekumar.r.nair, 
mauricio.breternitz.jr,victor.ying,youfeng.wu}@intel.com 

Abstract. This paper describes the design and implementation of a research 
dynamic binary translation system, StarDBT, which runs many real-world 
applications. StarDBT is a multi-platform translation system that is capable of 
translating application level binaries on either Windows or Linux OSes. A 
system-level variant of StarDBT can also run on a bare machine by translating 
the whole system code. We evaluate performance of a user-mode system using 
both SPEC2000 and some challenging Windows applications. StarDBT runs the 
SPEC2000 benchmark competitively to other state-of-the-art binary translators. 
For Windows applications that are typically multi-threaded GUI-based 
interactive applications with large code footprint, the StarDBT system provides 
acceptable performance in many cases. However, there are important scenarios 
in which dynamic translation still incurs significant runtime overhead, raising 
issues for further research. The major overheads are caused by the translation 
overhead of large volume of infrequently-executed code and by the emulation 
overhead for indirect branches.  

Keywords: Dynamic binary translation, performance evaluation. 

1   Introduction 

Dynamic binary translation (DBT) has many attractive applications in computer 
system designs. For example, it can be used to support legacy binary code [4]; support 
ISA virtualization [1]; enable innovative co-designed microarchitectures [7], [13], and 
many others [3], [10], [14], [15], [19], [20].   However, DBT technology also comes 
with its costs: translation overhead, emulation overhead and potentially other runtime 
overheads. It is an interesting research topic to obtain insights for designing systems 
featuring binary translation.  

To evaluate DBT design and application, we developed a multi-platform DBT 
system, named StarDBT. StarDBT translates from IA (Intel Architecture, a.k.a ‘x86’) 
to IA, including from IA32 to Intel64. As a multi-platform system, StarDBT can run 
as a user-mode module that resides in user process space. Currently, we have 
OS-specific support for user-mode DBT on both Linux and Windows x64 platforms. 
Furthermore, StarDBT can also serve as a system level DBT that runs directly on 
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hardware and boots commercial OSes. Abstraction and modularization is the key for 
StarDBT to support multiple platforms. Specifically, the generic part of the DBT 
system is separated, modularized and shared. The platform-dependent modules of the 
DBT are separated from each other and interface with the DBT generic part through 
an internal API. The DBT system has been stabilized enough to run many real-world 
applications. Hence, we currently focus on performance evaluation, tuning and 
obtaining insight on DBT runtime behavior.  

For real world deployment, it is important that a new technology handles all kinds 
of cases and performs well on representative applications. Pathological cases should 
be identified and handled gracefully. Therefore, we need to evaluate performance on a 
wide variety of workloads.  In this paper, we report our DBT performance for client-
side workloads, namely, SPEC2000 and some popular Windows applications.  

For the SPEC2000 suite, our StarDBT performs competitively to state-of-the-art 
DBT systems [4], [5], [17]. Arguably its performance is comparable to native runs 
(e.g. about 12% performance difference for SPEC2000 on Pentium 4 systems). For 
Windows applications that are less-benchmarked on most DBT systems, we observed 
acceptable performance in many cases (e.g. ranging from 10% to 40% slowdowns) 
and also found interesting performance issues in some others. Performance for 
Windows applications is critical to our DBT design. On one hand, Windows 
applications are more representative workloads for most computer users. On the other 
hand, Windows applications are more challenging for DBT systems -- they are 
typically multi-threaded, interactive GUI workloads that show different runtime 
behaviors than the frequently-benchmarked SPEC2000. Our StarDBT system has 
encountered severe translation overhead for some Windows applications due to their 
larger code footprint and less code reuse. Meanwhile, more indirect branches (e.g. 
more function and DLL calls/returns) in Windows workloads also adversely stresses 
the inefficient indirect branch emulation schemes of software-only DBT systems. In 
this paper, we strive for better understanding on DBT runtime behavior for Windows 
workloads and try to gain insights for DBT system design.  

This paper describes the StarDBT system, briefing highlights on its design and 
implementation. Preliminary performance evaluation is also presented. The rest of the 
paper is organized as follows. Section 2 discusses related work and summarizes the 
state-of-the-art DBT technology. Section 3 presents the design and implementation  
of the StarDBT system. Section 4 reports performance evaluation of the system.  
Section 5 concludes the paper. 

2   Related Work 

There are a few product systems that adopted the DBT technology [1], [4], [8], [13]. There 
are also many research papers studying DBT technology [2], [5], [9], [12], [16], [17]. 
However, DBT runtime overhead has long been a concern for the industry. Performance 
results are mostly published using hotspot (frequently executed code) dominant workloads 
such as the SPEC CPU 2000 [11] (referred to as SPEC2000 in this paper). In general, current 
DBT systems perform from comparably to competitively when compared with native runs 
for hotspot code. However, non-hotspot (cold, infrequently executed code) performance is 
less studied.  



6 C. Wang et al. 

DynamoRIO [5] is an IA32 to IA32 DBT system that supports flexible binary 
inspection and instrumentation. Performance numbers are published for the 
SPEC2000 and four Windows applications. Pin [14] is an instrumentation tool 
primarily on Linux, with limited Windows support so far. HDTrans [17] is a simple 
fast Linux-based binary translator. Its simplicity speeds up its cold code translation 
performance and it shows competitive performance among DBT systems that do  
not optimize hotspots. Performance is not reported for interactive GUI workloads.  
FX!32 [6] employs runtime interpretation coupled with off-line static binary 
translation and optimization. It runs Windows applications, but it does not fit into the 
DBT category. IA32-EL [4] runs Windows applications on Intel IPF platforms, and 
published SYSMARK2000 performance results. Although it observed less efficient 
execution for Windows applications, little is discussed about the underlying 
dynamics.  VMware [1] virtualizes the IA32 instruction set using dynamic binary 
translation to scan and translate certain resource-sensitive instructions. Therefore, 
VMware VMMs only translate 3% of the code (OS kernel code) and cause about 4% 
slowdown due to translation overhead. Transmeta [13] used a code morphing 
software (CMS) to implement IA32 processors and run IA32 binaries on mobile 
platforms. However, few performance results are published.  

3   StarDBT Design and Implementation 

The full spectrum of potential DBT applications motivated our system design to 
support multiple platforms. The binary translator evaluated in this paper targets 
translation from IA32 into Intel64 at user level.  Namely, it transparently translates 
32-bit IA32 application binaries into 64-bit Intel64 code at runtime, enabling full 
advantages of 64-bit computing for legacy 32-bit applications.  

3.1   Multi-platform DBT Architecture 

StarDBT runs on both Windows and Linux platforms. StarDBT for Windows 
platform runs popular Windows desktop applications such as Microsoft Office and 
Internet Explorer. The Linux version runs command-line Linux applications and also 
runs on top of a cycle-accurate simulator that simulates at Linux ABI level. 
Additionally, StarDBT also runs as a system-level virtual machine monitor that boots 
and runs commercial OSes. StarDBT is designed to boot various commercial OS 
kernels. At this point, it can boot Linux kernels. 

To support such a multi-platform system, we separated the DBT-generic (platform-
independent) part from DBT-platform (platform-dependent). The interface between 
these modules is an internal API named DBT-platform API. DBT-generic requests 
services such as resource allocation through this API. A DBT-platform module 
notifies the DBT-generic of certain events such as exceptions or callbacks also 
through this API.  

There are two major components of the DBT system: the binary translator and the 
runtime system that manages and controls the execution of the entire system. The 
binary translator components are mostly DBT-generic. However, the runtime system 
has to be divided into a generic part and a platform (-specific) part. The generic part 
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of the runtime dispatches execution, and manages the code cache and other important 
DBT resources in a platform-abstract way. The platform part of the runtime system 
provides platform-specific services such as initialization, finalization, platform 
interaction etc. Each platform needs its own specialized implementation of the 
platform part of the runtime. For example, the Linux platform runtime inserts a kernel 
module to load the DBT system, which is packed as a Linux user-mode dynamic 
library. The Windows x64 version DBT-platform runtime rewrites some part of the 
Microsoft wow64 runtime system to integrate our binary translators.   

3.2   Runtime Translation Design 

Dynamic binary translation incurs significant runtime overhead; this is especially true 
for the complex x86 instruction set. Therefore, like most other sophisticated DBT 
systems, we apply an adaptive translation strategy. It uses a simple fast translator for 
cold code translation and once a workload hotspot is detected, it applies optimizations.  

The simple and fast translation tries to generate target code with minimal runtime 
overhead. For most IA32 computation instructions (e.g. ALU ops and data moves), 
the DBT simply decodes and recognizes them. Then the translator copies these 
instructions to generate Intel64 code. Some IA32 instructions are no longer available 
in Intel64. These cases are further detailed in Subsection 3.3. Control transfer 
instructions such as branches, function calls and returns need to be rewritten. This 
involves some translation lookup and dispatch code (subsection 3.4).  

For program hotspots, we form straight-line traces (called regions) to optimize. 
Because this is conducted at run-time, we only implement a few effective 
optimizations such as code layout, registerization (for more registers in Intel64) and 
partial redundancy elimination.  

Translators place generated code in code caches for later reuse. The runtime 
dispatcher maintains a translation lookup table. The execution of the original IA32 
code is achieved via emulating in code caches and dispatching in the runtime system. 
Additionally, we use a 64K-entry translation lookup table as in [5] and we allocate 
16MB of memory for code cache. Once the lookup table or the cache is full, we 
simply flush the code cache. 

Generally, it is difficult to maintain true compatibility for user-mode virtual 
machines due to their memory footprint inside the application process. However, on 
64-bit systems, the larger 64-bit memory space offers extra memory space beyond the 
original 32-bit application space. Thus, our runtime system maintains true 
compatibility by allocating DBT memory above (outside) the 32-bit user space. 

3.3   IA32 to Intel64 Translation 

As aforementioned, some IA32 instructions are no longer supported in Intel64. For 
example, push and pop instructions only support 64-bit operands in 64-bit mode, 
making it non-straightforward to emulate the 32-bit stack efficiently. In our translator, 
we generate 64-bit code to emulate 32-bit stack instructions. For example, push32 eax 
is translated into the following code sequence:  

    lea   esp, [rsp - 4] 
    mov   [rsp], eax 
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It is important that the generated code for stack manipulation never uses space 
beyond its stack pointer, rsp. Some OS kernels may use the space beyond the stack 
to throw exception and context records for exception handling.  

Some IA32 instructions are aliased. However, in Intel64, they have only one 
opcode available. For example, all eight instructions (as a group) with opcode 82H are 
the same instructions as those with opcode 80H in IA32. There is a need to remap 
their opcode to the only opcode available in Intel64: 80H.  

There are also IA32 instructions that are missing in Intel64. For example, some 
BCD arithmetic and bit manipulation operations are no longer supported in Intel64. 
These instructions can be emulated with a sequence of Intel64 instructions. A tricky 
part is the segment manipulation instructions in IA32. The 64-mode does not support 
segmentation directly. Our user-mode StarDBT ignores the segmentation manipulation 
instructions (except for GS and FS segments which are still supported in Intel64).  
However, inside the kernel (as seen by our system-mode StarDBT), segmentation are 
processed in its true architectural sense. 

Table 1 summarizes some of our translation from IA32 to Intel64.  
Clearly, translating IA32 legacy instructions into Intel64 causes code expansion. 

The Intel64 REX prefix causes additional code expansion. However, in Intel64, more 
registers are available and we can exploit these extra registers to improve hotspot 
code performance.  

Table 1. Translation of Some IA32 Instructions 

Original IA-32 instruction Translated Intel64 Instruction 
PUSH ESP REX. MOV R8/32, ESP 

LEA ESP, [RSP – 4] 
REX. MOV [RSP], R8/32 

PUSH imm/32 (imm/8) LEA ESP, [RSP – 4] 
MOV [RSP], imm/32 (imm/32*)   // sign extend imm/8 to imm/32 

PUSH r/32 LEA ESP, [RSP – 4] 
MOV [RSP], r/32 

PUSH m/32 REX. MOV R8/32, M/32 
LEA ESP, [RSP – 4] 
REX. MOV [RSP], R8/32 

POP ESP MOV ESP, [RSP] 
POP r/32 MOV r/32, [RSP] 

LEA ESP, [RSP + 4] 
POP m/32 REX. MOV R8/32, [RSP] 

REX. MOV m/32, R8/32 
LEA ESP, [RSP + 4] 

ENTER imm16, imm8 LEA ESP, [RSP – 4] 
MOV [RSP], EBP 
LEA ESP, [RSP – imm16] (imm16 > 0) 
REX. MOV R8/32, [EBP – 4] 
REX. MOV [RSP + imm16 – 4], R8/32 
… 
REX. MOV R8/32, [EBP – 4 * imm8 + 4] (imm8 > 1) 
REX. MOV [RSP + imm16 – 4 * imm8 + 4], R8/32 (imm8 > 1) 
LEA EBP, [RSP + imm16] 
MOV [RSP + imm16 – 4 * imm8], EBP (imm8 > 0) 

LEAVE MOV ESP, EBP 
MOV EBP, [RSP] 
LEA ESP, [RSP + 4] 
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3.4   Control Transfers in Code Cache 

Control transfers between translated code in the code cache can cause significant 
runtime overhead if handled inefficiently, because of the need to look up translated 
addresses. StarDBT eliminates direct jumps and (eventually) chains direct conditional 
branches together, maintaining execution in the code cache. Indirect branches are 
inlined with dispatch code to lookup the translation mapping table for their translated 
targets. The translation mapping table for large footprint applications can be quite big. 
We speed up this dispatch code for indirect branch target lookup with a special cache 
table. Return instructions are handled similarly to indirect branches.  

4   Evaluation and Characterization   

4.1   Evaluation Methodology 

We evaluate our StarDBT system using both SPEC2000 and widely-used Windows 
GUI-based interactive applications (mostly from the SYSMARK 2004 SE [18]). We 
run SPEC2000 as a whole to collect the baseline performance numbers. These data 
can be compared with prior DBT systems and they are good performance indicators 
for batch-mode and long-run applications. We selected seven Windows applications 
to study DBT performance for interactive workloads. Unfortunately, the SYSMARK 
2004 SE benchmark is too large (and out of our script control) for performance 
characterization tools. Therefore, we developed our own automation scripts to run 
these applications. Whenever possible, we develop scripts that run similar scenarios 
as the original SYSMARK 2004. Otherwise, we develop scenarios that reflect 
common usage of the benchmarked software. The workload scenarios will be 
described shortly.  

We use the Intel VTune Performance Analyzer v8.02 to study performance issues. 
In our experiments, we emphasize the measurement of response time for interactive 
workloads. In many cases, this can be measured by a timer. However, this is more or 
less subjective and imprecise. For example, sometimes the GUI response looks ready 
for user’s interaction; however some background processing may be still active. A 
timer measurement in this situation is not well-defined.  In our study, we use the 
number of duty cycles (collected by VTune) to measure the response time. The duty 
cycle in VTune is defined as the number of cycles that processors use to execute 
instructions from the application(s) being monitored.  

We use two generations of machines to study platform sensitivity in our study.  
The first machine is a 3.60GHz (Pentium 4) Xeon based dual-processor system  
that runs Windows 2003 x64 server. It has 1MB L2 cache per core and 2GB memory. 
The second machine is a 3.0GHz Intel Xeon 5160 (Woodcrest) based Dell Precision 
490 workstation, also running Windows 2003 x64 server. The Dell Woodcrest  
system has two dual-core Woodcrest processors (4 processor cores) and 4GB of 
memory.  

4.2   Windows Interactive Workloads  

The criteria for developing our workloads are: (1) The scenarios must be 
representative of user interactive applications, using widely-used software; (2) the 



10 C. Wang et al. 

benchmark scripts should run long enough to be realistic, but short enough to be 
characterized (using VTune). We use the same BAPCO SYSMARK 2004 scenarios 
whenever possible. And eventually we developed the following workload scenarios in 
the test: (Non-Microsoft software in SYSMARK 2004 could not be launched outside 
the SYSMARK scripts) 

• Access: the script opens the SYSMARK 2004 sales database, performs two 
queries and then exports the result to Excel format.  

• Excel: the script opens the worksheets from the SYSMARK 2004. It performs 
two sorting operations and calculates values for large columns based on formulas. 
Finally, it does some auto formatting. 

• Power Point (PPT): this script opens the car sales and commercial presentation 
from SYSMARK 2004. Then it shows slides of the 70-second presentation that 
contains figures, animations and a short video clip.   

• Word: this script opens the Tom Sawyer document from the SYSMARK 2004. It 
performs a set of formatting, editing operations before a final print-preview.  

• Internet Explorer (IE): this script activates the IE browser, searches on Google 
for SYSMARK 2004 and its white paper. It opens the white paper, flips through 
and closes it.  Then it surfs several well-known websites such as CNN and ESPN. 
It also searches OLE automation documents from MSDN and finally it checks 
our local weather from weather.com and a stock page from Google Finance.  

• Media Player (MPlayer): this script loads and plays the SYSMARK 2004 car 
commercial video clip (68 seconds).  

• Visual Studio (VStudio): this is our own benchmark scenario. It opens Microsoft 
Platform SDK and builds our entire StarDBT system. In a sense, it is similar to 
self compilation tests for many compilation systems.  

Table 2 shows some basic characteristics of our benchmark scenarios when they run 
natively on the Dell 490 Woodcrest system without DBT. The first data column 
shows the instruction count for each benchmark run. The second data column shows 
the duty cycles for each run, collected by VTune. And the third data column shows 
the elapsed wall time for the benchmark scenario, including user thinking time. It is 
clear that most benchmarks run tens of seconds and tens of billions duty cycles. 

Table 2. Benchmark basic characteristics 

BENCH MARK  INSTR COUNT 
(BILLIONS) 

DUTY CYCLE 
(BILLIONS) 

WALL TIME 
(SECOND) 

Access 65.607 52.281 76 

Excel  8.178 11.038 69 

PPT  123.117 159.169 77 

Word  6.765 11.253 69 

IE 15.369 25.501 83 

MPlayer 43.113 44.463 70 

VStudio 48.576 69.114 43 
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4.3   SPEC2000 Performance 

Although we have developed hotspot optimizations in our StarDBT system, they are 
not particularly helpful in our GUI interactive scenarios and sometime degrade 
performance. Furthermore, to compare with prior projects, it is important to have a 
consistent setting. Therefore, in our baseline performance measurement using 
SPEC2000, we disabled hotspot optimizations except hot trace re-layout.  

Given the StarDBT settings above, Figure 1 shows the SPEC2000 performance 
running on our StarDBT system on the Woodcrest system. The input binaries are 
compiled with Intel ICC compiler 9.0 at the highest optimization level (O3) with 
profile feedback. Because hotspot optimizations are not invoked, StarDBT’s slow-
downs are due to DBT translation and emulation overhead. The average slowdown for 
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(b) SPEC2000 performance on Pentium 4 platform 

Fig. 1. SPEC2000 performance 
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integer benchmarks is about 46% while the FP benchmarks show an average 
slowdown of 17%, making the aggregate slowdown for the entire SPEC2000 
approximately 27%.  However, the same performance test on the Pentium 4 machine 
shows respectively 25%, 2% and 12% slowdowns for the SPEC2000 integer, FP and 
entire suite.  The performance difference between the two generations of processors 
reflects the different processor efficiency and the memory hierarchy efficiency of the 
test platforms. The new Woodcrest processors are more efficient and thus are more 
sensitive to extra instructions caused by DBT dynamic instruction count expansion. 
This effect can be seen even from the same platform while running applications with 
different memory behavior. For example, in Figure 1, memory intensive (thus 
pipeline less efficient) programs such as mcf and FP benchmarks cause less 
slowdown than CPU intensive programs on both platforms.  

DynamoRIO [5] reported slightly better performance (17% slowdown for 
SPEC2000 integer, with a different experimental setting) than our StarDBT when 
only simple translation is enabled. HDTrans [17] also translates from IA32 to IA32 
and reported slightly better performance than DynamoRIO. Although the quality of 
the input binaries and the experimental machines may influence the performance 
differences, all these experiments demonstrate that current DBT systems can work 
fairly well on CPU intensive workloads where program footprint is small and the 
translated code is heavily reused.   

4.4   Interactive Application Performance 

To better understand how DBT affects user experience of Windows applications, we 
collect responsiveness data when running Windows applications on top of our 
StarDBT. The responsiveness is measured both by timing elapsed wall clock time and 
by collecting the duty cycle numbers using VTune. Figure 2 graphs the slowdown 
factor (when compared with native runs on Woodcrest) of the scenarios described in 
subsection 4.2.  
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It is found that the responsiveness in terms of wall time is not too bad, 35% 
slowdown on average, slightly worse than the SPEC2000 slowdown. In our actual 
user experience, there is little noticeable difference between DBT runs and native runs 
for four out of the seven scenarios (MPlayer, PPT, Excel and Word). However, there 
are cases, like the IE scenario, which are much slower and users clearly experience 
the slowdown while loading web pages. On the other hand, the responsiveness 
measured by duty cycles is worse than what the wall time slowdown suggests. On 
average, DBT runs are executing 2.4 times more duty cycles than native runs. For 
reference, the SPEC2000 DBT runs show the same duty-cycle expansion factor as the 
slowdown factor. The significantly more duty cycles for interactive workloads have 
both performance and power efficiency implications.   

Specifically for each individual benchmark, we observed different runtime 
behavior. For example, PPT and MPlayer scenarios render real time presentations at 
certain pace. Their duty cycle expansion can hardly be noticed by users. Rather, it 
appears as slightly heavier CPU utilization. Excel and Word scenarios are more 
interactive. They exercise many different features of the tested software for editing or 
formatting. However, on today’s processors, the extra duty cycles they caused are a 
relatively short period of real time for end-user experience. The Visual Studio 
scenario is an interesting case. It invokes Microsoft C/C++ compiler many times to 
compile the files in our StarDBT project. Each file is compiled by a separate compiler 
process. Since the StarDBT is a user-mode module inside each process, cross-process 
translation sharing is not supported. Thus our DBT caused many repeated re-
translations during the entire project build. Since the DBT build is more like a batch 
job, the more duty cycles clearly show as wall time slowdown. Although user-mode 
DBT causes serious overhead for such cases, it should be in a much better position 
when translation is done at system level, where translation is managed at the physical 
memory level. The worst user experience in our benchmarks is IE surfing. In a sense 
IE is a software framework that loads many other software modules to process 
different web document sections. This is especially true for today’s webpage designs. 
Many webpages involve dynamic scripting and plug-in technology that invokes JVM, 
flash player, PDF readers, and many other document/content process modules. 
Consequently IE causes the worst slowdown (7X) in terms of duty cycles and more 
than 2X in terms of wall clock time.     

5   Conclusion  

Binary translation has many potential applications and it enables new features to 
computer systems cost-effectively. However, its runtime overhead has long been a 
concern. Many recent DBT systems have been fairly successful in running CPU 
intensive workloads. However, performance characterization has not been clear for 
GUI-based interactive Windows applications.  

We have developed a state-of-the-art dynamic binary translation system, StarDBT, 
which runs on multiple platforms. The user-mode StarDBT demonstrates comparable 
performance to other cutting-edge runtime translation systems [4], [5], [16], [17] 
when running the SPEC2000 benchmarks. Additionally, we study performance using 
popular Windows applications.  
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In general, we found that current software binary translation technology can 
provide acceptable responsiveness in many cases. However, clear slowdowns are still 
experienced for some common user applications. In our evaluation, we collected and 
analyzed detailed performance data to achieve insight into this subject. We found that 
dynamic instruction count expansion is the primary performance factor for the DBT 
runs. This expansion is due to (1) emulation overhead for unsupported instructions 
and control transfers (for steady state performance in code cache) and (2) translation 
overhead for big footprint workloads and interactive workloads.  We are using the 
insight from this performance characterization to guide future research that will 
address these performance issues. 
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Abstract. The majority of currently available dynamic branch predictors base 
their prediction accuracy on the previous k branch outcomes. Such predictors 
sustain high prediction accuracy but they do not consider the impact of 
unbiased branches, which are difficult-to-predict. In this paper, we evaluate the 
impact of unbiased branches in terms of prediction accuracy on a range of 
branch difference predictors using prediction by partial matching, multiple 
Markov prediction and neural-based prediction. Since our focus is on the 
impact that unbiased branches have on processor performance, timing issues 
and hardware costs are out of scope of this investigation. Our simulation results, 
with the SPEC2000 integer benchmark suite, are interesting even though they 
show that unbiased branches still restrict the ceiling of branch prediction and 
therefore accurately predicting unbiased branches remains an open problem. 

Keywords: Branch prediction, unbiased branch, branch difference value 
prediction. 

1   Introduction 

In a previous paper [1] we showed that a branch in a certain dynamic context is 
difficult-to-predict when that branch is unbiased and its outcomes are non-
deterministically shuffled. A branch is unbiased if its behaviour does not demonstrate 
a tendency to either the taken or the not taken path. We quantified and demonstrated 
that the percentages of difficult-to-predict branches in the SPECcpu2000 benchmarks 
suite [2] are significant (averaging between 6% and 24%, depending on the type of 
branch prediction context and the prediction context length). We considered the 
ceiling of history context-based prediction to be around 94% if the feature set length 
of 28 bits is used. Furthermore, we showed that many current state-of-the-art 
conventional branch predictors are unable to accurately predict these unbiased 
branches. This is because current branch predictors only use a limited amount of 
prediction information, such as local- or/and global-correlations and path-based 
information. The use of such limited information means that unbiased branches 
cannot be predicted to a high degree of accuracy. Consequently, other information is 
required to predict branches which have been classified as unbiased. In this paper we 
investigate the use of a branch condition sign. The condition sign can be either 
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positive, negative or zero. The condition sign is the difference between the data 
operands held within each source register. For example, a positive condition sign is 
computed if the datum in the first source register is greater than the datum in the second 
source register, and vice-versa for a negative condition sign, and zero if the data show 
equality. We show that branch behaviour is predictable by predicting the condition 
sign because branch’s output is deterministically correlated with the condition’s sign, 
but the impact of unbiased branches remains significantly high. 

2   Related Work 

Smith [3] showed that the majority of mispredicted branches come from few static 
branches. He also showed that a context-predictor where the last ‘n’ (as low as 2) data 
values produced or consumed are used in combination with a closing outer-loop 
counter can achieve better prediction accuracy than a conventional gshare predictor. 

Heil [4] introduced the idea of a Branch Difference Predictor (BDP) which simply 
holds branch source register differences. Heil used these data-value differences as 
inputs into a Rare Event Predictor (REP). The Rare Event Predictor was used to 
predict difficult-to-predict branches and the majority of easy-to-predict branches were 
predicted with a conventional gshare predictor. In Heil’s study a difficult-to-predict 
branch was a branch that was mispredicted by a conventional gshare predictor. In 
contrast to Heil, we define in [1] a difficult-to-predict branch to be a branch with a 
low degree of polarisation since that tends to shuffle between taken and not-taken and 
is therefore unbiased. Heil used the differences in the register data values as inputs to 
the REP (up to a maximum of 3 value differences), whereas in our study we use the 
sign of the differences (up to a history of 256 sign differences) between the register 
data values. We therefore use less storage and our simulation results show that we 
achieve better prediction accuracy. 

In [5], González introduced the concept of branch prediction through value 
prediction (BPVP).  The idea was to pre-compute a branch outcome by speculatively 
predicting the source operand as each branch is dynamically encountered. González’s 
prediction strategy was to use a conventional gshare in conjunction with a BPVP. The 
inclusion of the BPVP was to predict the branches that were difficult-to-predict by the 
conventional gshare predictor. González therefore has a similar approach to Heil. 

Vintan [6] proposed pre-computing branches by determining a branch outcome as 
soon that branch’s operands were available. The basis behind such pre-computation 
was that the instruction that produced the last branch source operand would also 
trigger the branch condition estimation. This means that as soon as this operation was 
completed then the branch outcome could be immediately resolved. Even though this 
concept would provide (almost) perfect prediction accuracy, there was a heavy timing 
penalty in the case when a branch instruction is dynamically executed immediately 
after the last source operand has been computed, in fact this is a common case. 

Gao [7] implemented a Prediction by Partial Matching (PPM) predictor that predicts 
branch outcomes by combining multiple partial matches through an adder tree. The 
Prediction by combining Multiple Partial Matches (PMPM) algorithm selects up to L 
confident longest matches and sums the corresponding counters that are used to furnish 
a prediction. A bimodal predictor is used to predict branches that are completely biased 
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(either always taken or always not taken) and the PMPM predictor is used to furnish a 
prediction when a branch is not completely biased. In this study we also implement a 
PPM predictor, but our PPM predictor has three significant differences.  First, our 
Branch Difference Prediction by Combining Multiple Partial Matches (BPCMP) 
furnishes predictions for unbiased branches identified in our previous work [1, 8] 
instead of not completely biased branches. Second, in Gao’s study global branch history 
information was used, whereas we use a combination of global and local branch 
difference history information. Finally, Gao used an adder tree algorithm to combine 
multiple Markov predictions, we use one of two voting algorithms. 

Jiménez [9] proposed a neural predictor that uses fast single-layer perceptrons. In 
his first perceptron-based predictor the branch address is hashed to select the 
perceptron, which is then used to furnish a prediction based on global branch history. 
Jiménez [10] furthered his work by developing a perceptron-based predictor that uses 
both local and global branch history information. We also evaluate a perceptron-based 
predictor, but unlike Jiménez our inputs are based on global and local branch operand 
difference information. In [11] Jiménez developed a piecewise linear predictor using a 
piecewise linear function the idea being to exploit different paths leading to the 
branch undergoing prediction. We have also evaluated a piecewise linear predictor on 
the unbiased branches as described in [12]. 

3   Unbiased Branches 

In [1] we define an unbiased branch to be a branch that does not demonstrate a bias to 
either the taken or the not taken path which means unbiased branches show a low 
degree of polarisation towards a specific prediction context (by which we mean, a 
local prediction context or a global prediction context or a path-based prediction 
context) and are therefore difficult-to-predict by that particular prediction context. 

We also identified branches that were unbiased on their local and global history 
contexts and, on their global history XORed with the branch address. Our results 
showed that even with a feature set length of 28 bits the number of unbiased branches 
remained significantly high at just over 6%. We therefore considered the ceiling of 
history context-based prediction to be around 94%. 

3.1   Condition-History-Based Branch Prediction Using Markov Models 

A context-based predictor [13] predicts the next datum value based on a particular stored 
pattern that is repetitively generated in the values’ sequence. This means that, a context-
based predictor could predict any stochastic repetitive sequence. Value predictors that 
implement the PPM algorithm represent an important class of context-based predictors. 
In a PPM predictor, if a prediction cannot be furnished by order k then the pattern length 
is shortened and the Markov predictor of order k-1 is used to furnish the prediction and if 
this order cannot furnish a prediction the order is further reduced to k-2 and so on until 
either a prediction is furnished or the Markov predictor is of the order 0. 

3.1.1   Local Branch Difference Predictor 
In Figure 1 we show the mechanism of our local PPM Branch Difference Predictor. The 
Branch Difference History Table (BDHT) is indexed by the branch address (B0). In 
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the case of a hit in the BDHT, the last h dynamic source operand differences are 
furnished. To save storage space, sign operand differences are recorded as +1, -1 or 0.  
For each dynamic branch encountered, a positive difference is recorded if the first 
source operand is greater than the second, a negative difference is recorded if the first 
source operand is less than the second source operand and zero is recorded if both 
operands are the same. The h difference fields of the BDHT entry are then used as 
inputs into our complete-PPM predictor. The PPM predictor furnishes the predicted sign 
value of the branch undergoing execution (B0) of order k, where k<h. Speculative 
execution of the branch (B0) only occurs in the case that the pattern length k is repeated 
in the last h differences with a frequency greater than or equal to a threshold value. 

Branch Difference History Table (BDHT)

Prediction by Partial Matching
(PPM)

Prediction by Partial Matching
(PPM)

dif(Bn) PC of B0dif(B2) dif(B1)
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Fig. 1. A local complete-PPM branch-difference predictor 
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Fig. 2. A global and local complete-PPM branch-difference predictor 
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3.1.2   Combined Global and Local Branch Difference Predictor 
Figure 2 shows the branch prediction mechanism using a combined global and local 
PPM-based branch-difference predictor. The Global History Register (GHR) contains 
the global branch difference history pattern. Every global branch history pattern has 
its own BDHT and the GHR history pattern is used as an index to its BDHT. Each 
BDHT is configured as a local BDHT and is accessed as described in section 3.1.1. 

3.1.3   Branch Difference Prediction by Combining Multiple Partial Matches 
Figure 3 shows our branch prediction mechanism using the Branch Difference 
Prediction by Combining Multiple Partial Matches (BPCMP). An entry in the BDHT 
is accessed by the method described in section 3.1.1, but now the h branch differences 
are used as inputs into multiple Markov predictors of different orders (n where n < h). 
Each Markov predictor furnishes a predicted sign value (+1, -1 or 0) and these 
multiple predictions are passed to a voter. The final value prediction is then furnished 
as the greatest sign frequency that was input into the voter. 
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Fig. 3. Multiple Markov branch-difference prediction 

We have also investigated a confidence-based voting mechanism. The function field 
of each entry in the BDHT holds n saturated confidence counters, in the range -4 to +4, 
which are associated with the n Markov predictors. For a pattern length k, where 
1 ≤ k ≤ n, the Markov predictors will furnish a value prediction if that repeating pattern 
is stored at least once in its h history values. In the case of a correctly predicted branch, 
its confidence saturating counter is incremented and decremented in the case of a 
misprediction. The Markov prediction is then replicated to match its confidence counter, 
so long as that confidence counter is >0. These multiple value predictions are then 
passed to the voter, which furnishes the most frequent value prediction. 

4   Simulations 

We have developed a number of simulators (as described in section 3) which extend the 
sim-bpred simulator provided in SimpleSim-3.0 [14]. We also include implementations 
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to identify unbiased branches as presented in [1, 8]. We have evaluated our simulators 
using the unbiased branches we identified in [1] on the SPEC2000 benchmark suite [2]. 
All simulation results are reported on 1 billion dynamic instructions skipping the first 
300 million instructions. We emphasise that our investigation is about the identification 
and the impact that unbiased branches have on dynamic branch prediction and therefore 
realistic hardware costs and timings are out of scope of this investigation. 

4.1   Local Branch Difference Prediction 

We set out to determine the optimal local branch difference predictor. We asked 
ourselves 5 questions. Would the operand sign value difference algorithm achieve 
better prediction accuracy than the operand value difference? Which local history 
register length would provide the best prediction accuracy? Which pattern length 
would achieve the best prediction accuracy? What is the most suitable threshold 
value? What is the ideal number of local BDHT entries?  

In Figure 4 we answer the first two questions: What would be the most suitable 
sign algorithm to use and, which history register length achieves the best prediction 
accuracy? We identified unbiased branches the same way as in our previous work [1], 
and we evaluated the impact of these unbiased branches using a complete PPM 
predictor with a local BDHT. The BDHT we used was sufficiently large to ensure that 
every static branch had its own entry thereby eliminating any possibility of collisions. 
The pattern length was set to 3, the threshold value was set to 1, and the local history 
register length was varied from 8-signs to 64-signs in increments of 8. Our results 
show that better prediction accuracy is achieved by the operand sign difference 
algorithm rather than the operand value difference algorithm and that beyond a local 
history register length of 24-signs there is only marginal improvement in prediction 
accuracy. The reason that the operand sign difference algorithm outperforms the 
operand value difference algorithm is due to the increased amount of correlation 
information used by the sign difference algorithm. The frequency of information used 
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Fig. 4. Average difference prediction accuracy with increasing local history register length of 
the sign difference and operand difference algorithms 
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by the operand value difference algorithm is low and therefore correlation is low, 
whereas the frequency of information used by the operand sign difference algorithm 
is high and therefore correlation is high. 

In Figure 5 we answer the third question: Which pattern length would achieve the 
best prediction accuracy? We used a complete PPM predictor with the operand sign 
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Fig. 5. Average difference prediction accuracy with increasing pattern length 
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Fig. 6. Average difference prediction accuracy with increasing threshold value 
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difference algorithm, a local history register length of 24-signs and the threshold 
value was set to 1. Our results show that initially prediction accuracy improves with 
increasing pattern length and then decreases and these results confirm that our 
original pattern length of 3 achieves the best prediction accuracy. 

In Figure 6 we answer the fourth question: What is the most suitable threshold 
value? We used the same parameters as Figure 5, but the pattern length was now set 
to 3 and the threshold value varied. Our results show that prediction accuracy 
improves with an increasing threshold value, but there is marginal, if any, benefit of 
increasing the threshold value beyond 7. 

In Figure 7 we answer the final question: What would be the optimal number of 
entries in the local BDHT? We used the same parameters as Figure 6, and the number 
of entries in the local BDHT was varied from 64 entries to 256 entries in increments 
of 64. We also include an unlimited local BDHT. Our results show that the impact of 
the so called 3Cs (capacity, collisions and cold-start) to be minimal with a 256 entry 
local BDHT and that there is minimal prediction accuracy gain by increasing the 
number of entries beyond 256 entries where the increased number of cold-start 
mispredictions may impact on prediction accuracy. 

We investigated the branch prediction accuracies of the individual SPEC2000 
benchmarks using our optimal local branch difference predictor. We used the operand 
sign difference algorithm, with a local history register length of 24-signs, a pattern 
length of 3, and we use a local 256 entry BDHT. In our results we compare two 
threshold values, 1 and 7. When the threshold value is 1, we achieve an average 
branch prediction accuracy of 90.55% and the unbiased branches have an average 
branch prediction accuracy of 71.76%. When the threshold value is increased to 7, we 
achieve an average branch prediction accuracy of 96.43% and the unbiased branches 
have a prediction accuracy of 76.69%. These results show the significance of the 
threshold value on prediction accuracy and the impact of unbiased branches. 
Consequently, unbiased branches in this local context remain difficult-to-predict. 

4.2   Combined Global and Local Branch Difference Prediction 

We consider the high number of unbiased branches and their impact on prediction 
accuracy to be due to their high degree of shuffling. To alleviate the problem of 
shuffled branch behaviour of unbiased branches we have developed a combined 
global and local branch difference predictor which would convert an unbiased branch 
in a local context into a biased branch in a global context, and therefore a difficult-to-
predict branch in a local context would be an easy-to-predict branch in a global 
context. 

In our global and local branch difference predictor, each global history register 
pattern is used to point to its own local BDHT as described in section 3.1.2 and shown 
in Figure 2. Consequently, we restrict the global history register length to a maximum 
of 4-signs. The parameters of each of the local BDHTs were the same as those which 
achieved the results shown in Figure 7, except we used a 256 entry BDHT. 

In Figure 8 the global history register length of 0 represents the optimal local 
branch difference predictor whose results are provided in Figure 7, with a 256 entry 
BDHT. With the combined global and local difference predictor, as the global history 
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Fig. 8. Combined global and local difference prediction accuracy 

register length is increased there is a marginal improvement in prediction accuracy. 
With a global history register length of 4-signs and a threshold value of 1, the combined 
global and local branch difference predictor achieves an average prediction accuracy of 
90.47%, but the unbiased branches only achieve an average prediction accuracy of 
68.81% showing a marginal improvement over the local branch difference predictor. 
When the threshold value is increased to 7, the average prediction accuracy improves to 
97.44% and the average prediction accuracy of unbiased branches is still significant at 
81.25%. Even though there is some improvement in prediction accuracy, these results 
show that the impact of unbiased branches still remains significant and therefore implies 
that alternative approaches are required. 

4.3   Branch Difference Prediction by Combining Multiple Partial Matches 

Our first alternative approach was to develop a branch difference predictor using five 
Markov predictors of orders ranging between 1 and 5 (as described in section 3.1.3 
and shown in Figure 3). Again, we use a 256 entry local BDHT, a local history 
register length of 24-signs; we compare the prediction accuracy of two voting 
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algorithms, a simple voting algorithm and a confidence voting algorithm. Our results 
show that the average prediction accuracy of the confidence voting algorithm is 
marginally better than the simple voting algorithm, as shown in Figure 9. 

4.4   Neural-Based Branch Difference Global and Local Prediction 

In our second alternative approach we developed a family of neural-based branch 
difference predictors. Our neural predictors are fast single-layer perceptron predictors 
similar to those developed by Jiménez [9]. For a fair comparison with our 256 entries 
local BDHT we use a perceptron table with 256 entries. Our single-layer perceptron 
predictors use global history information only or local history information only or a 
combination of global and local history information. 

To determine our optimal single-layer perceptron predictor, we vary the input 
history register lengths. Not surprisingly, the combination of global and local history 
information outperforms the other two predictors. We found that the best average 
prediction accuracy of 92.58% was achieved with a 40-global history signs 
combination with 28-local history signs. However, the unbiased branches still have a 
significant impact with an average prediction accuracy of 73.46%. 

Finally, we considered the impact of unbiased branches on a piecewise linear 
predictor based on [11]. We dynamically changed the global history input from 18- to 
48-bits combined with local history input from 1- to 16-bits. We achieved an average 
prediction accuracy of 94.2% on all branches but the impact of unbiased branches still 
remained significant at 77.3%. 

4.5   Comparing All of the Optimal Predictors 

In Figure 10, we bring together the impact that unbiased branches have on all of the 
optimal predictors we have developed (local-PPM, combined-PPM and multiple 
Markov combined- perceptron and the piecewise linear branch predictor). Our results 
show that unbiased branches have a severe impact on all branch predictors and in all 
cases unbiased branches only have an average branch prediction accuracy of between 
71.54% (local-PPM) and 77.3% (piecewise linear branch predictor). 
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Fig. 10. Branch prediction accuracy on unbiased branches 
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5   Conclusion 

In this study we have validated our previous findings in [1, 8] that current state-of-
the-art branch predictors correlate either insufficient information or wrong 
information in the prediction of unbiased branches. This led us to consider alternative 
approaches: the branch difference predictors using PPM and multiple Markov 
predictors and neural-based perceptron predictors. Our results show that unbiased 
branches still limit prediction accuracy even with these alternative approaches. The 
most effective branch predictor was the piecewise linear branch predictor, but even 
this predictor only achieved a prediction accuracy of 77.3% on the unbiased branches. 

However, we have shown that the sign difference algorithm achieves better 
prediction accuracy than the operand difference algorithm. We also show that 
combined global and local information achieves better prediction accuracy than 
global information alone or local information alone. 

In our opinion, the most optimal local branch difference predictor uses the operand 
sign difference algorithm, with a local history register length of 24, a pattern length 
of 3, a threshold value of 7 and a local BDHT with 256 entries. This predictor 
achieves an average prediction accuracy of 96.43% on all branches but on the 
unbiased branches only achieve a prediction accuracy of 79.69%.  

Also in our opinion, the impact of unbiased branches significantly restricts 
prediction accuracy. This means that accurate branch prediction of unbiased branches 
remains an open problem and such branches will continue to limit the ceiling of 
dynamic branch prediction. Perhaps an alternative mechanism might be to hand-shake 
scheduler support with dynamic branch prediction. The idea of the scheduler would 
be to remove as many branch instructions from the static code as possible and leave 
the remaining branches to be dynamically predicted. Yet another alternative could be 
to pursue the concepts of micro-threading [15] where small fragments of code are 
executed concurrently and the branch problem is no longer a major concern. 
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Abstract. Speculative parallel threading technique has been proposed
to speed up hard-to-parallelize applications running on multi-core chips.
Traditionally offline profiling approach provides necessary information
for the optimizations used in speculative parallelization. However, the
offline profiling can’t address the applications without appropriate train-
ing input. We propose an online profile guided optimization approach
to address this problem, which performs profiling and optimizing at
runtime and doesn’t need an individual profiling pass as well as good
training inputs. In our design, programs run in a manner of two con-
tinuous phases which are profiling phase and optimized execution phase
respectively. Furthermore, our approach can also detect at runtime the
behavior change of programs parallelized speculatively. Next the execu-
tion flow will be transferred to a new optimized version more suitable
to this change. The evaluation shows that the ability of this approach is
comparable to the traditional offline implementation. So we believe that
this approach is able to serve as an individual guide to speculatively par-
allelize the applications when traditional offline profiling is unavailable.

Keywords: Thread-level parallelization, profile guided dynamic opti-
mization.

1 Introduction

1.1 Profile Guided Speculative Parallelization

Speculative parallel threading technique [1][2][4] has been proposed to enhance the
performance of hard-to-parallelize programs on the CMP platforms. It allows to
parallelize regions of code in the presence of ambiguous data dependence. Spec-
ulative threads run in parallel, and commit sequentially in the original order of
the program. Other threads will check whether the read-after-write dependence
is violated when an earlier thread commits, and restart when suffering depen-
dence/break violations. Since the complete dependence relations don’t need to
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be decided ahead of time, the compiler can partition easily some code regions into
threads, such as iterations of loops, even if this partition may bring a lot of viola-
tions at runtime. Transactional memory [9] can effectively support the speculative
mechanism. Entire codes or parts of them in the speculative thread are taken as
transactions, and the transactions commit in the logical order among threads. As
each transaction completes, it writes all of its newly produced states to shared
memory atomically.

When using transaction memory, codes of threads can be split into two re-
gions, transaction region and ordered region. Codes in transaction are specula-
tively parallel, while those in ordered region are executed sequentially in logical
order among threads. The memory accesses which frequently cause data depen-
dence violation can be moved into ordered region of threads, so the correspond-
ing dependence violation will be avoided. This optimization is called transaction
partition, which reduces the restart rate of speculative threads at the cost of par-
allelism loss. To gain the optimal effect, it must first identify which references
are frequent violation candidates (FVC), thus to move them. Static compiling
can tell only a small proportion of FVCs. Profiling technique can assist the com-
piler to overcome this problem [6][10]. It collects information about the behavior
of a program from its past execution. Information about the crossing-iteration
data dependence probabilities could effectively guide the optimizations such as
transaction partition.

The traditional profiling method [6] is offline, i.e. it needs first to run the
program once to collect information, afterwards feed back the results to compiler
for optimization. The offline method requires a training input in this trial run.
But it is not easy to get the representative training input for a program. If
the training input doesn’t represent the actual workload, the program may be
optimized incorrectly. For example, many commercial programs have multiple
functions to fit various requirements, and there isn’t a general training input for
profiling. This offline profiling method prevents the speculative parallel threading
from being applied on applications without appropriate training input, even
though the behaviors of these programs are predicable actually when they are
running.

1.2 Related Work

Du et al. proposed a cost-driven compilation framework [1][5][6] to select and
to transform the profitable loop for speculative parallel threading. It is imple-
mented by a static compiler with aids of profiling in advance. The offline profiling
process provides data dependence information and control flow reaching proba-
bilities which are used to annotate the cost graph of a loop. Compiler selects the
optimal partition through calculating the mis-speculation cost of every possible
partition. Compared with it, our design selects the optimal transaction partition
at runtime, so using the optimized codes needn’t wait until the next execution
of programs.

Java runtime parallelizing machine (JRPM) [3] is a dynamic compilation
system supported by hardware profiler. It is based on CMP with thread-level
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speculating supports. This system uses two-phase profile guided optimization to
boost the performance of speculative threads. It collects information from ini-
tial execution to identify those good loops to parallelize. Only loops with high
predicted speedup are recompiled into speculative threads.

1.3 Objective of This Study

The goal of this study is to design a more flexible profile guided optimization
mechanism to improve the performance of speculative multi-threading execu-
tion when the offline method is unavailable. The online profiling method [3][7]is
promising because it doesn’t need a training input or a separate trial run. It
profiles only an initial short phase of program execution to predict behaviors of
the whole program, and its results are used immediately at runtime to optimize
the rest of the execution.

In this paper, we propose a continuous two-phase profile guided optimiza-
tion framework on a speculative multithreading execution platform based on
transaction memory. The framework includes online profiling and dynamic op-
timization for speculative parallelization of loops. To reduce runtime overhead,
it generates possible optimized loop versions in advance, and at runtime se-
lects an appropriate version to execute according to initial profiling results.
This design supports dynamic transaction partition for speculative parallel
threading, and other optimizations such as value prediction and triple regions
partition.

The rest of this paper is organized as follows. Section 2 describes the method-
ology and implementation of our framework in detail. Section 3 evaluates the
design using several benchmarks. Section 4 concludes this paper.

2 Continuous Two-Phase Profile Guided Optimization
Approach

Our approach of online profile guided optimization is a continuous two-phase
course. In the initial phase, only a thread executes the program’s sequential
code version which contains profiling codes. After initial profiling phase, it halts
and incurs an optimizing routine. The optimizing routine predicts the follow-
ing behavior of the program through the initial profiling result, thus to perform
corresponding optimizations on original version. Afterwards the program en-
ters the next phase and resumes the execution using this new optimized code
version without profiling. If a change of program behavior is observed in the
optimized execution phase, the program will reenter the profiling phase, and re-
peat the above process. In continuous two-phase optimization, two-phase refers
that the thread is executed in either of two phases: profiling phase or opti-
mized execution phase, while continuous refers that a new profiling-optimizing
cycle could be triggered again with the change of runtime characteristic of the
program.
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This section first briefly introduces the speculative multithreading execution
model used in our design. Next a detailed description about our online profile
guided optimization framework is given. Additionally, two problems this frame-
work encounters and the solutions are provided in the following subsection. The
last subsection describes some extensions to the original design.

2.1 Speculative Parallel Execution Model

The speculative execution model used by threaded programs is depicted in Fig. 1.
Iterations of loops are interleavingly allocated into every thread, and codes of an
iteration are divided into transaction region and ordered region. A thread first
executes the transaction region, and then commits the writes of transactions
at the beginning of ordered region. It can’t enter the ordered region until the
threads executing the earlier iterations have finished this region and passed the
token to it. If dependence violations are detected during commitment of other
threads, the thread will re-execute the transaction region.

Fig. 1. Speculative execution model with 2 threads

2.2 Dynamic Optimization Framework

An overview of the continuous two-phase profile guided optimization framework
is given in Fig. 2.

Fig. 2. Continuous two-phase profile guided optimization framework
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Example of a loop for speculative parallel threading

while (i<N)
{
foo1();
if cond1
j=i;

else
j=i-1;

S1:v[i]=foo2(v[j]);
i++;
}

First, the compiler identifies the loop candidates for speculative execution
and their potential violation candidates. We take the loop code in the above
example to show the code transformation in static compiling and the dynamic
optimization at runtime. In this loop, function foo1 is iteration-independent, but
the statement S1 will carry the crossing-iteration dependence if cond1 is false.
According to the probability that this condition is true, it could be decided
whether moving S1 into the transaction region. But this probability is unknown
in static compiling stage.

Afterward compiler inserts profiling code into the original loop body to form
the profiling code version which is shown in Fig. 3(b), and generates ahead-of-
time optimized multithreading code versions shown in Fig. 3(e)(f). The details
about ahead-of-time optimizing technique will be described in the following sub-
section.

As Fig. 3(a) shows, Two-phase profile guided optimization process is driven
by a main loop. In the beginning, profiling version function is executed by thread
0 alone, i.e. the execution is sequential. Besides the original computing, the extra
inserted profiling codes collect information about intra-iteration control flow and
crossing-iteration data dependence. In Fig. 3(b), the function branch_profile
will record the times when the cond1 is true. This initial profiling phase lasts a
fixed amount of iterations, such as 200.

When profiling phase ends, a runtime decision routine like the function
decision_routine in Fig. 3(c) is called. It analyzes the collected profiling re-
sults to decide current frequent violation candidate sets (FVC). According to
the mapping correlation between different FVC sets and ahead-of-time opti-
mized code versions, it chooses a currently optimal version for the execution of
rest iterations. The version may be a speculative parallel version or the origi-
nal sequential version. The latter means that this loop can’t boost performance
through the speculative execution, and the rest of its execution will be sequential.
As an example, decision_routine decides whether the cond1 is always true.
If so, the reference v[j] is not a FVC, and the statement S1 could be moved
into transaction. Thus, the function loop_version1 in Fig. 4(e) will be called in
the main loop. Otherwise, the function loop_version2 in Fig. 3(f) with smaller
transaction region will be selected.
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Fig. 3. Loop codes transformed for speculative threading execution: (a) describes the
main loop; (b) describes the code version executed in profiling phase; (c) describes the
decision routine; (d) describes monitoring code; (e) and (f) give two optimized version
with different transaction partitions
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If a speculative parallel version is selected, the loop will enter optimized ex-
ecution phase. In this phase the loop will run as the execution model in Fig. 1.
However, a piece of additional monitoring codes is inserted into ordered re-
gion of iterations. Although initial profiling results have supported the spec-
ulative execution, the execution manner still needs to be adjusted when the
behavior of the loop changes significantly. The monitoring codes check this
change by calculating current restart rate, which is shown in Fig. 3(d). If the
restart rate exceeds the threshold that current code version can bear, it is very
possible that loop behavior characteristic identified in last profiling phase has
changed. The current version is not suitable any more, so the loop will per-
form a new profiling-optimized execution cycle again for the rest iterations. In
the Fig. 3, the function optimized_version returns after the monitoring code
breaks the loop, So the main loop will perform the next iteration. This way
endows the framework with the ability to optimize the loop with phase-changed
behavior.

2.3 Accuracy of Initial Profiling and Its Effective Implementation

We evaluated the ability of initial profiling on predicting data dependence haz-
ards against the offline one. These dependence relations are unable to be identified
in static compiling stage because of unsolved condition branches and ambiguous
addresses from alias. Crossing-iteration dependence probabilities in loops can be
gained directly by dependence profiling based on address comparison, or indirectly
through the branch probabilities from control flow profiling.

For control flow profiling, recent studies [7] have already indicated that for
SPEC CPU2000 benchmark even very short initial profiling has comparable ac-
curacy to the traditional full profiling when predicting the hot path in program
execution. Furthermore, we consider about the matching degree of the results
from initial direct data dependence profiling and those from full profiling. Mis-
match rates for some applications in SPEC CPU2000 benchmark are given in
Fig. 4, which shows a mean value of 5.6%. It is small enough to believe in the
ability of the initial profiling.

Fig. 4. Mismatch rates for frequent viola-
tion candidate

Fig. 5. A dependence graph example for
computing partition cost
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We use both edge profiling and data dependence profiling to obtain the data de-
pendence probability. For direct data dependence profiling, the instrumentation-
based software implementation is adopted, which approximates to the tool
proposed in [8].

2.4 Speculative Code Versions Generating in Static Compiling

After gaining the initial profiling results, how to use them at runtime to optimiz-
ing codes is another challenge. Overhead introduced by a complicated optimizing
procedure will easily spend the performance gains from the rest of codes execu-
tion it generates; even the total effect of optimizing procedure and its output
are negative.

We attempt the technique of ahead-of-time optimization to solve this problem.
In static compiling stage every possible runtime characteristic is predicted, and
individual specialized code versions are generated for them. At runtime, the
version with respect to the actual program behavior will be triggered to run.

As shown in Fig. 3. compiler generates multiple loop versions with different
transaction partitions corresponding to possible FVC sets, and the decision rou-
tine will select the corresponding version for the rest of the execution according
to actual FVC sets given by initial profiling phase. This technique which at
runtime decides to use some partition is called dynamic transaction partition.

For a violation candidate, the following code transformations may be per-
formed in static compiling stage:

R1: fully parallelize the loop, without explicit ordered region, if the violation rarely
occurs;

R2: move the candidate and its dependence descendants into ordered region, if the
violation is frequent and the size of ordered region isn’t beyond the threshold;

R3: under other conditions, abandon this loop for speculatively parallelization.

To calculate the threshold in rule R2, an approximate formula estimating the
performance gain of the speculative parallelized loop is given as follows:

speedup =

⎧
⎪⎪⎨

⎪⎪⎩

lp

t + e + c + lα
, t > (p − 1)e + pc (1a)

l

e + c + lα
, t ≤ (p − 1)e + pc (1b)

Where
t : execution time of transaction region,
e : execution time of order region,
l : original sequential execution time of the iteration,
c : communication delay to pass committing token,
p : number of current threads,
α : restart rate of the loop.
t, e and c have been denoted in Fig. 1.
When there is only one violation candidate and it has been moved into ordered

region, restart rate α is 0. So we can conclude that the threshold of order region’s
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execution time e is l−c or lp−c−t, which is used by rule R2. If a FVC introduces
ordered region with size beyond this threshold, the rest iterations of the loop
have to execute the original sequential version.

Now we consider about the case when the initial profiling gives a result with
a combination of FVCs. Theoretically, N FVCs will generate 2N combinations
and every combination should have one individual version, and lead to a code
explosion. But this is not true, because most combinations lead to the original
sequential version due to large size of the ordered region. For the actual applica-
tions, it is enough to consider the combination containing only 2 FVCs, in some
cases, more than 2.

Figure 5 shows a loop dependence graph example, where each node is anno-
tated with its own size (execution time). The threshold is 5. According to the
above rules, only FVCs combinations A, C and C, D require generating a new
version. As listed in table 1, FVCs set {A,C} corresponds a version with ordered
region {A,C}, While all combinations containing B lead to the sequential version
due to its large partition cost.

Table 1. Mapping from FVC sets
to partition versions

A B C D ordered region version
* 1 * * {A,B,C,D,E}
1 0 1 0 {A,C}
0 0 1 1 {D,C}
... ... ... ... {A,B,C,D,E}

Table 2. mapping from FVC sets to parti-
tion versions with value prediction

A B CDordered region version
0 1 0 0 profile B

1 0 1 0 {A,E}
0 0 1 1 {D,C}
0 predicable 0 0 predict B

... ... ...... {A,B,C,D,E}

2.5 Extensions

We have also implemented software value prediction as a complement to dynamic
transaction partition optimization. Value prediction plays a very important role
among many efforts to improve speculative performance, which has been proved
in [5].

If the value used by a FVC is predicable, the predicted value could be spec-
ulatively used in transaction region. And the thread doesn’t need to read this
reference in ordered region. This method could solve the problem that FVCs
with large partition cost reduce parallel degree, and could enable the sequential
version to become a speculative parallel one. Whether the value of a FVC is pred-
icable and what its change pattern is are identified usually by value profiling.
Value profiling and value prediction have been embedded into our optimization
framework, which can deal with last-value change pattern and stride pattern.

For example in Fig. 5, the correlations of FVCs and versions are modified to
table 2. If B is identified as a FVC, an additional value profiling procedure will
be performed by the prolonged profiling phase. Next if B is identified predicable,
new version with value prediction will replace original sequential version to run
in optimized execution phase.
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Another extension to our design is to add an extra ordered region similar
to the pre-fork region in [6] during the speculative execution of an iteration. If
a FVC results in a version with too large ordered region, even the sequential
version, its dependence source will be considered about to move. If the source
has enough small partition cost, the pre-fork region will be built for it.

3 Experiments and Results

To evaluate the design, we generate speculative parallel threaded codes and run
them on a simulator. The simulator models a CMP whose core executes one
instruction per cycle. The reason of using this structure is to emphasize the
effect of thread level parallelism on performance and to weaken the influence
of instruction level parallelism or memory hierarchical details. A simulator with
1 IPC is competent to achieve information about speculative threads behavior,
such as restart rates, ordered region ratios and so on.

Four integer applications and three float pointing applications in SPEC
CPU2000 benchmark suite are chosen for the test. The potential violation candi-
dates information is obtained through the conservative analysis of the compiler.
The multi-version transformation of the loop codes is performed manually on the
source level. Since the optimal transaction partition is the common optimization
target for our design and that in [6], the results are compared with those given
in it. The design proposed in [6] can support only two parallel threads, so we
also provide the results on two threads. However, our design supports arbitrary
numbers of threads.

First the ability of our approach to find good speculative parallel loops is
checked. Figure 6(a) shows the runtime coverage of the loops that are speculative
executed. Our framework can speculatively parallelize the loops that cover over
70% total execution time for float pointing application. For integer ones, vpr
(place) and mcf give the results of over 60%. Coverages for gcc and twolf fall
down, but they are not so bad comparing with the results in [6].

Fig. 6. (a) Runtime coverages of speculative parallel loops; (b) Average ratios of or-
dered region size to loop body size
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Figure 6(b) describes the average results of dynamic transaction partition,
and Fig. 7(a) also gives the total effect of two kinds of optimization transaction
partition and value prediction on reducing the restart rate. For the float pointing
applications,which could be easily parallelized, ordered region occupying average
1.07% of the loop body size reduces the restart rate to 0.1%. For integer applica-
tions, mcf has the largest ordered region, which provides restart rate 0.35% . It is
as if twolf should restart more frequently, but the actual rate is still small. This
proves that our framework is competent to improve the behaviors of speculative
threads with little parallel degree loss.

Fig. 7. (a) Restart rates of speculative threads; (b) Speedups of speculative parallel
execution

Finally the speedup results are given to depict the effect of our approach on
program performance in Fig. 7(b). The speedup values are based on comparing
the original sequential program execution time against the time of speculative
execution which includes profiling phase and optimized execution phase. For all
float pointing and two integer applications, significant performance improvement
has been observed. The optimized execution eliminates the negative effect of
initial profiling phase. But for the gcc and twolf, this is not true. Especially for
twolf, the gain is nearly zero. Through analyzing the execution of twolf, we find
that there are many loops with insufficient iteration number. These bad loops
increase the profiling time, but not provide enough rest optimized execution to
balance the overhead. Compared with the offline method, our online profiling
method can’t be aware of the entire behavior of the program in advance, such
as the trip count. However, the resulting performance loss can be alleviated by
conservatively selecting loop candidates.

4 Conclusion

From the above results it can be concluded that the two-phase online profiling
approach has the comparable ability to the offline profiling when it is taken as a
guide to transaction partition optimization and identifying the loops suitable to
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be speculatively parallelized. This approach can guide the speculative optimiza-
tion of the applications lacking appropriate training inputs, while the traditional
offline method doesn’t work for them. In addition, it can effectively deal with
the applications with phase-changed behavior due to its continuous optimizing
ability.

An interesting idea is to combine the online and offline profiling methods. A
fast offline profiling provides some global but coarse information about program
behavior, and using this information the online one can focus the profiling and
optimization efforts on the more valuable targets. We will attempt this idea in
future work. And a specializing codes tool with low overhead at runtime will
also be developed to replace the current multiple versions way.

Acknowledgments. We would like to thank Chen Yang and Tin-Fook Ngai
for the important advice and guidance from their experience in [6]. We also
thank Feng Wang and Rui Guo for their contributions to the experiments. This
research is supported by the grant from Intel Education (PO#4507176412), the
National Natural Science Foundation of China (60373043 and 60633040) and the
National Basic Research Program of China (2005CB32160).

References

1. Li, X.-F., Du, Z.-H., Yang, C., Lim, C.-C., Ngai, T.-F.: Speculative Parallel Thread-
ing Architecture and Compilation. In: ICPPW’05 (2005)

2. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A Scalable Approach to
Thread-Level Speculation. ISCA 27 (2000)

3. Chen, M., Olukotun, K.: The Jrpm System for Dynamically Parallelizing Java
Programs ISCA 30 (2003)

4. Hammond, L., Hubbert, B., et al.: The Stanford Hydra CMP. IEEE Micro 20(2),
71–84 (2000)

5. Li, X.-f., Yang, C., Du, Z.-H., Ngai, T.-F.: Exploiting Thread-Level Speculative
Parallelism with Software Value Prediction. ACSAC05

6. Du, Z.-H., Lim, C.-C., Li, X.-F., Yang, C., Zhao, Q., Ngai, T.-F.: A Cost-
Driven Compilation Framework for Speculative Parallelizing Sequential Program.
In: PLDI’04 (2004)

7. Wu, Y., Breternitz, M., Quek, J., Etzion, O., Fang, J.: The Accuracy of Initial
Prediction in Two-Phase Dynamic Binary Translators. In: CGO’04 (2004)

8. Chen, T., Lin, J., Dai, X., Hsu, W.C., Yew, P.C.: Data Dependence Profiling for
Speculative Optimization.CC 13, 57–72 (2004)

9. Hammond, L., Wong, V., et al.: Transactional Memory Coherence and Consistency.
ISCA 31 (2004)

10. Gupta, R., Mehofer, E., et al.: Profile Guided Compiler Optimizations. The Com-
piler Design Handbook: Optimizations & Machine Code Generation. Auerbach
Publications



Entropy-Based Profile Characterization and

Classification for Automatic Profile
Management�

Jinpyo Kim1, Wei-Chung Hsu1, Pen-Chung Yew1, Sreekumar R. Nair2,
and Robert Y. Geva2

1 Department of Computer Science and Engineering, University of Minnesota,
Twin-Cities, Minneapolis, MN 55455, USA

{jinpyo,hsu,yew}@cs.umn.edu
2 Intel, Santa Clara, CA, USA

{sreekumar.r.nair,robert.geva}@intel.com

Abstract. The recent adoption of pre-JIT compilation for the JVM
and .NET platforms allows the exploitation of continuous profile collec-
tion and management at user sites. To support efficient pre-JIT type
of compilation, this paper proposes and studies an entropy-based pro-
file characterization and classification method. This paper first shows
that highly accurate profiles can be obtained by merging a number of
profiles collected over repeated executions with relatively low sampling
frequency for the SPEC CPU2000 benchmarks. It also shows that sim-
ple characterization of the profile with information entropy can be used
to guide sampling frequency of the profiler in an autonomous fashion.
On the SPECjbb2000 benchmark, our adaptive profiler obtains a very
accurate profile (94.5% similar to the baseline profile) with only 8.7%
of the samples that would normally be collected using a 1M instructions
sampling interval. Furthermore, we show that entropy could also be used
for classifying different program behaviors based on different input sets.

1 Introduction

JIT compilers have been widely used to achieve near native code performance
by eliminating interpretation overhead [1,2]. However, JIT compilation time is
still a significant part of execution time for large programs. In order to cope
with this problem, recently released language runtime virtual machines, such as
Java Virtual Machine (JVM) or Microsoft Common Language Runtime (CLR),
provides Ahead-Of-Time (AOT) compiler, sometimes called pre-JIT compiler,
to generate native binaries and store in a designated storage area before the
execution of some frequently used applications. This approach could mitigate
runtime compilation overhead [3].

A pre-JIT compiler [4] can afford more time-consuming profile-guided opti-
mizations (PGO) compared to a JIT compiler because compilation time in a
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Fig. 1. Continuous Profile-Guided Optimization Model

pre-JIT compiler may not be a part of execution time. With the deployment of
Pre-JIT compilers, automatic continuous profiling and re-optimization, as shown
in Figure 1, becomes a viable option for the managed runtime execution envi-
ronment. For example, with the introduction of a Pre-JIT compiler on the recent
Microsoft CLR [3], continuous PGO framework as shown in Figure 1 has become
a feasible optimization model. The Pre-JIT compiler compiles MSIL code into
native machine code and stores it on the disk. The re-compilation does not oc-
cur during program execution but, instead, is invoked as an offline low priority
process. The re-compilation process relies on accurate HPM (Hardware Perfor-
mance Monitor)-sampled profiles that are accumulated over several executions
of the application program. HPM-sampled profiles could provide more precise
runtime performance events, such as cache misses and resource contentions, that
allow more effective runtime or offline optimizations [5,6,7].

Due to the statistical nature of sampling, the quality of sampled profiles is
greatly affected by the sampling rate. A high sampling frequency would cause
more interrupts, require more memory space to store sampled data, and more
disk I/O activities to keep persistent profile data. With a fixed number of runs,
a challenge to the runtime profiler is how to determine the ideal sampling rate so
that we can still obtain high quality profiles with minimum sampling overhead.

In this paper, we propose an “information entropy” to determine an adaptive
sampling rate for automated profile collection and processing that can efficiently
support continuous re-optimization in a pre-JIT environment. The information
entropy is a good way to summarize the frequency distribution into a single
number [8]. Since the sampled profile in our study is the frequency profile of
collected PC addresses, the information entropy of the profile is well suitable for
characterizing program behaviors we are interested in.

In practice, a program has multiple input data sets and exhibits a different
program behavior for each particular input. Hence, the entropy of a profile could
be different according to the input used. We show that the information entropy
can be used to classify profiles with similar behaviors. This classified profiles
allow the optimizer to generate specially optimized for that particular input
sets.
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The primary contributions of this paper are as follows:

– We show that highly accurate profiles can be obtained efficiently by merging
a number of profiles collected over repeated executions with low sampling
rates. We demonstrate this approach by using the SPEC2000 benchmarks.

– We also show that a simple characterization of profiles using information
entropy can be used to automatically set the sampling rate for the next
profiling run. On SPECjbb2000, our adaptive profiler obtains very accurate
profile (94.5% match with the baseline profile) with only 8.7% of the samples
needed using 1M-instruction sampling intervals.

– We show that the entropy of a profile could be used to classify different
program behaviors according to different input sets and to generate classified
profiles for targeted optimizations.

The rest of this paper is organized as follows. Section 2 describes the method-
ology used in evaluating the accuracy of sampled profiles. Section 3 describes
entropy-based profile characterization to adaptively select the sampling rate for
efficient profile collection and management. Section 4 describes entropy-based
profile classification to characterize sampled profiles from multiple input sets.
Section 5 provides experimental setups and results. Section 6 discusses related
works. Finally, Section 7 summarizes our work.

2 Similarity of Sampled Profiles

Sampling-based profiler collects the frequency profile of sampled PC addresses
instead of edge count profiles using instrumentation. Zhang et al. [9] show that
an accurate edge profile can be deduced from the frequency profile of sampled
PC addresses.

2.1 Similarity Metric

In order to evaluate the similarity between a sampled profile and the “complete
profile”, we define a “similarity comparison metric” between the two profiles.
Since our profile is a list of frequency counts of distinct PC addresses sampled,
it can be represented as an 1-dimensional vector. To compute the linear distance
between two vectors, we used the Manhattan distance shown in the following
equation as a similarity comparison metric.

S =
n∑

i=1

(2.0 − |ai − bi|)
2.0

ai, bi : relative freq. of ith distinct PC addr.

The PC addresses of ai and bi are the same. The ai or bi could be zero when no
matching samples are collected. If two profiles are identical, S becomes 1.

Baseline Profile to Determine Similarity of Sampled Profiles. Instead
of using instrumented profiles, we use a merged profile generated from very high
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frequency sampling rates over multiple runs as the baseline profile. We collected
sampled profiles three times using each of the six different sampling rates (one
sample every 634847, 235381, 87811, 32973, 34512, 32890 instructions), and gen-
erate a baseline profile by merging the 18 profiles for each benchmark program.
In every sampling interval, one PC address is collected. Each sampled profile
has a list of frequency count for each distinct PC address. Hence, we could
compute normalized frequency for each distinct PC address by dividing its fre-
quency count by the total sample counts. We mask off 4 low-order bits of the
PC address to approximate a basic block, i.e. use the masked address as the
starting address of an approximated basic block instead of distinct PC addresses
within the approximated basic block. The obtained frequency is the frequency
of the approximated basic block. The obtained baseline profile is very close to
the instrumentation-based complete profile. It ranges from 0.95 to 0.98 using our
similarity comparison metric for SPEC CPU2000 benchmarks.

2.2 Accuracy of Persisted Profiles

As the similarity between the baseline profile and the instrumented complete
profile reflects how “accurately” the baseline profile could mimic the complete
profile, we use “accuracy” and “similarity” interchangeable in the rest of the pa-
per. Intuitively, the accuracy of merged profiles improves as the number of sam-
ples increases. Figure 2 show that merged profiles are more accurate (compare
to the baseline profile) than a single instance of profile, the R2R (Run-to-Run)
in the figure, on 176.gcc with 200.i input.
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Fig. 2. Convergence of merged profiles of gcc with 200.i input set

In Figure 2, sampled profiles are cumulatively merged along repeated runs
on the same input set. For example, at the 10th runs, the merged profile is the
summation from 1st profile to 10th profile. The y-axis shows the similarity (S)
between the baseline profile and the merged profile with three different sampling
rates (one sample every 1M, 10M, 100M instructions).
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We could observe two interesting facts. First, most of the improvement in
accuracy came from the first three to six runs. Second, after that the curve
of improvement becomes flattened. Since we cannot afford too many runs at
high sampling rates, we need to adapt sampling rates according to the program
behavior. We address how to automatically reduce the sampling rate through
profile characterization in the next section.

3 Entropy-Based Profile Characterization

Information Entropy: A Metric for Profile Characterization. An appro-
priate sampling rate could be determined according to the program behavior.
Since our frequency profile can be represented as a statistical distribution, where
each distinct PC address has a probability that is the number of its occurrences
divided by the overall number of samples, we can use the equation to quantify
the shape of statistical distribution. In this paper, we propose to use informa-
tion entropy as defined by Shannon [8] to characterize the sampled profiles (for
example, “flat” or “skewed”). The information entropy is defined as follows:

E =
N∑

i=1

Pi · log 1
Pi

Pi : relative freq. prob. of ith distinct PC addr.

If the program has a large footprint and a complex control flow, a large number
of distinct PC addresses will be collected. On the other hand, if the program
has a small number of hot spots (or hot loops), sampled profile will have a small
number of distinct PC addresses. It leads to a low entropy number. This property
could be used in determining an appropriate sampling rate for the next run. The
two example programs shown in Figure 3 clearly show that entropy distinguish
“flat” profiles from “skewed” profiles. The gcc in Figure 3(a) shows a relatively
“flat” distribution and a high entropy number (E=10.12). In contrast, the gzip in
Figure 3(b) shows a “skewed” distribution and a low entropy number (E=5.67).
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Fig. 3. Relative frequency distribution of PC address samples (gcc, gzip)
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Entropy-Based Adaptive Profiler. The application of entropy heuristics in
the adaptive profiler is as follows:

1. When an application is loaded and ready to run, check if there is already a
profile file for this application. If not, i.e. this is the first time the application
executes, start with a low sampling rate.

2. After the program terminates, compute the information entropy of the pro-
file. Categorize the profile based on one of the three ranges of entropy val-
ues. Our data shows that the following three ranges are sufficient: low [0-5],
medium [5-8], and high [8 or higher] entropy.

3. When an application is loaded, if the entropy is known, set the sampling
rate according to the entropy: a high entropy uses a high sampling rate, a
medium entropy uses a medium sampling rate and a low entropy uses a low
sampling rate.

4 Entropy-Based Profile Classification

The entropy of their profiles will also change along with the changed input sets.
For multiple inputs, this section describes how entropy can be used to classify
different profiles.
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Fig. 4. Entropy-based profile classification

Figure 4 shows the workflow of entropy-based profile classification. In our
profile classification framework, we use k-mean clustering technique to identify
similar profiles. If the maximum number of clusters sets to 3 (k = 3), incoming
profiles will be classified and merged into three persistent profiles (A, B, C).
In Figure 4, the three profiles with their entropy in a similar range (E =
6.46, 6.30, 6.68) are classified and merged into a single persistent profile A. One
profile with entropy (E = 8.42) is classified and merged into persistent profile
B. Another one with entropy (E = 5.52) is classified and merged into persistent
profile C.

When the recompilation for PGO is invoked, the controller determines
whether the classified profiles are merged into one profile or one particular pro-
file is selected for PGO. If the similarity (S) of classified profiles is very low, it
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means that the profiles come from disjoint code regions. In this case, it is better
to combine the profiles. vpr is such a case. The profile from place and the profile
from route are disjoint from each other. Otherwise, we have to choose one profile
that is merged from majority of runs.

5 Experiments

5.1 Experimental Setup

For our experiments, we collected the sampled profiles with Intel SEP(Sampling
Enabling Products) tool ver. 1.5.252, running on 3.0 GHz Pentium 4 with Win-
dows XP Operating System. The SPEC CPU2000 INT and FP benchmarks
are used to evaluate the convergence of merged profiles and the effectiveness of
using entropy to characterize different sampled profiles. The SPEC CPU2000
benchmarks are compiled with Intel icc compiler ver. 8.0 with O3 optimization
level. The SpecJBB 1.01 benchmark is used to show how the entropy could be
effectively used in an adaptive profile manager.

In the SPEC CPU2000 INT benchmarks, vpr, vortex, gzip, gcc, perlbmk and
bzip2 have multiple input sets. We used these six benchmarks for our experi-
ments. These benchmarks are compiled with the Intel icc compiler ver. 8.0 with
O3 optimization level, and measured on 1 GHz Itanium-2 processor machine. The
profile feedback uses Intel icc profile guided optimization. In our experiments,
number of maximum clusters is set to 3 (MaxK = 3).

5.2 Experimental Results

Accuracy of Merged Profiles. Figure 5 shows that persisted profiles converge
to the baseline profile at different convergence rates based on their program be-
havior using SPEC CPU2000 (INT, FP) benchmark and a sampling rate of one
sample every 100M instructions. In SPEC CPU2000 INT benchmarks shown in
Figure 5(a), most of benchmarks converge quickly above a similarity metric of
0.9 (i.e. more than 90% similar to the baseline profile) after the initial five runs
except for five benchmarks (gcc, vortex, perlbmk, crafty, eon). Since those four
benchmarks have relatively complex control flows and large instruction foot-
prints, they need a higher sampling rate to achieve a targeted accuracy with
only a limited number of runs. In the SPEC CPU2000 FP benchmarks shown
in Figure 5(b), most benchmarks converge quickly above 0.9 similarity to the
baseline after initial five runs except three benchmarks (lucas, applu, fma3d).

Entropy-Based Profile Characterization. Table 1 shows the entropy of
SPEC CPU2000 INT benchmarks. Interestingly, we can observe that the entropy
of those benchmarks are clustered in three ranges. Two programs (vpr, mcf )
show a low entropy (0 ≤ E < 5). Four programs (gcc, crafty, perlbmk, vortex )
show a high entropy (E ≥ 8). The rest of programs have a medium entropy
(5 ≤ E < 8). The four programs that show high entropy exactly match the
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Fig. 5. Convergence of merged profiles of SPEC CPU2000 benchmarks

Table 1. Entropy of SPEC CPU2000 INT benchmarks

benchmark entropy benchmark entropy benchmark entropy benchmark entropy

gzip 5.67 vpr 4.87 gcc 10.12 mcf 4.45
crafty 9.52 parser 7.79 eon 7.95 perlbmk 8.46

gap 7.62 vortex 8.02 bzip2 7.50 twolf 7.24

programs, shown in Figure 5(a), that need higher sampling rates to achieve a
targeted accuracy.

Table 2 shows the entropy of the SPEC CPU2000 FP benchmarks. Two pro-
grams (swim, art) show a low entropy (0 ≤ E < 5). Three programs (lucas,
applu, fma3d) show a high entropy (E ≥ 8). Three programs that show high en-
tropy also exactly match the programs, shown in Figure 5(b), that need higher
sampling rate. The results strongly suggest that entropy is a good metric to
select the sampling rate for SPEC CPU2000 benchmarks (INT, FP).

Table 2. Entropy of SPEC CPU2000 FP benchmarks

benchmark entropy benchmark entropy benchmark entropy benchmark entropy

wupwise 6.43 swim 4.86 mgrid 5.09 applu 8.26
mesa 7.85 galgel 5.86 art 4.01 equake 5.98

facerec 6.44 ammp 6.95 lucas 9.26 fma3d 9.16
sixtrack 5.19 apsi 7.91

We could start sampling with high frequency for all programs to obtain more
accurate profiles in general. However, it would require unnecessary high over-
head. Based on our entropy based characterization and observation on con-
vergence of merged profiles, only seven programs among 26 SPEC CPU2000
programs need a sampling rate higher than one sample per 100M instructions.
Hence, it is more cost-effective to start with low sampling rate and adjust the
sampling rate according to the profile entropy collected at runtime.



48 J. Kim et al.

Adaptive Profiler. Figure 6 shows the results of using entropy in an adap-
tive profiler for the SPECjbb ver. 1.01 benchmarks written for Microsoft .NET
platform. After the first run of the program, the profiler increases the sampling
rate from one sample per 100 M instruction to one sample per 10M instructions
according to the entropy measured. In practice, we may not have the baseline
profile to compute the similarity metric (S). We could use the delta (Δ) of simi-
larity (S) between current cumulative profile and previous cumulative profile. If
the ΔS is small enough (for example ΔS = 0.005), we consider that convergence
curve of merged profile has been flattened. Depending on the number of runs,
the profiler can stop or continue to collect profiles. In Figure 6, the ΔS is less
than a given threshold (ΔS < 0.005) at the 7th run. Since we expect 6 to 8 runs
in this experiments, the profiler decides to stop profile collection.
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When we compare the profiles generated from our adaptive profiler with those
from a sampling rate of one sample per 1M instructions, our profile is quite
accurate (S=0.945) (94.5% similar to the baseline) with only 8.7% of samples
taken. Our profile is only 3% less accurate compared to the profile generated
from the sampling rate of one sample per 1M instructions. Since an edge profile
could be deduced from this frequency profile as explained earlier, 3% difference
in accuracy will not lead to any significant difference in the accuracy of the
deduced edge profile.

Entropy-Based Profile Classification. We found that there are three types
of program behavior. In the type I, the program behavior does not change much
with different input sets. Hence, the entropy of their profiles from different inputs
is pretty similar to each other. vortex program is like that. Their sampled profiles
are classified and merged into one baseline profile. This is the most simplest case.

Table 3 shows performance improvement from PGO on vortex with multiple
input sets. Each column of the table uses different input set. For convenience, it
is numbered according to input sets, for example the one is for lendian1 input.
Each row presents the performance improvement from the binary generated us-
ing feedback profiles. The baseline binary to compute performance improvement
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Table 3. Performance improvement (%) from PGO on vortex with multiple input sets

1:endian1 2:endian2 3:endian3 average

feedback:(1) 27.64 30.84 27.83 28.77
feedback:(2) 28.03 31.26 26.92 28.74
feedback:(3) 28.02 30.02 31.26 29.77

feedback:(self) 27.64 31.26 31.26 30.06
feedback:(classified) 27.30 31.39 26.25 28.31

Entropy 7.80 8.19 7.77

is the binary generated without using PGO. For example, feedback(1) is the
binary generated using the profile generated from lendian1 input. feedback(self)
is the binary that is generated from the same input with which the profile gen-
erated. The feedback(self) is used to show the full potential of PGO. In vortex,
feedback(classified) uses one profile merged from all profiles.

In the type II, program behavior changes significantly due to the change
of input data set. Hence, the sampled profiles from each different input are
dissimilar. vpr is like that. Since the entropy of two sampled profiles are in
different ranges, they are classified into two different profiles. Since the similarity
(S) of the profiles is very low (S < 0.4), the profile manager combines them into
one profile when used for PGO. Combining disjoint profiles is generally beneficial
since it would increase the code coverage.

Table 4 shows the performance improvement from PGO on vpr with different
input sets. The feedback(1) experiences 3.0% slowdown compared to the baseline
binary when input set 2 is used. The feedback(2) also loses 6.76% performance
when input set 1 is used. It shows that PGO could degrade performance if
the profile used in feedback is not generated from a representative input set.
The feedback(classified) uses a merged profile from the two sampled profiles.
Interestingly, it performs 2.26% better than the feedback(self) binary. It might
be because merged profile provides increased code coverage that gives slightly
better analysis results for compiler optimizations. This may be due to some
heuristics used in compiler optimizations that are sensitive to path frequency
distribution.

In the type III, their profiles could be classified into several groups of similar
profiles. gzip, perlbmk, gcc and bzip2 are in this camp.

Table 4. Performance improvement (%) from PGO on vpr with multiple input sets

1:place 2:route average

feedback:(1) 4.72 -3.00 0.86
feedback:(2) -6.76 8.59 0.92

feedback:(self) 4.72 8.59 6.66
feedback:(classified) 8.96 8.88 8.92

Entropy 6.83 4.82
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Table 5. Performance improvement (%) from PGO on gzip with multiple input sets

1:source 2:log 3:graphic 4:random 5:program average

feedback:(1) 4.52 4.17 7.87 5.75 4.04 5.27
feedback:(2) 5.05 4.77 9.73 11.24 5.01 7.16
feedback:(3) -6.97 -8.02 6.29 10.35 -8.89 -1.45
feedback:(4) -0.28 -4.86 7.24 14.49 1.65 3.65
feedback:(5) 5.62 4.68 13.40 12.56 5.06 8.26

feedback:(self) 4.52 4.77 6.29 14.49 5.06 7.03
feedback:(classified) 6.38 4.95 6.29 12.48 5.06 7.03
feedback:(1,2,4) 6.38 4.95 12.32 12.48 6.38 8.50

Entropy 5.71 5.87 6.49 5.92 4.98

Table 5 shows the performance improvement from PGO on gzip with differ-
ent input sets. Three profiles (1:source, 2:log, 4: random) are merged into one
profile. The profile (3:graphic) and the profile (5:program) are classified into
separate profiles. The profiles from three text inputs are classified into the same
group. Table 5 indicates that entropy-based classification works quite well. The
feedback(1,2,4) performs 1.47% better than that from feedback(self).

From the above results, we could see that entropy is a good metric to classify
sampled profiles for PGO. The binaries generated from classified profiles always
perform similar to or better than that from feedback(self) binaries. It should be
noted that in our experiments, the feedback(classified) binaries never caused any
slowdown compared to the performance of the binaries generated without PGO
for any input sets. In contrast, for example, feedback(3) in gzip shows slowdown
in performance compared to the performance of the binary generated without
PGO for three inputs (1:source, 2:log, 5:program).

6 Related Work

Savari and Young [10] introduced an approach to analyze, compare and combine
profiles that use information theories. In our work, we used information entropy
to adaptively select sampling rate, characterize profiles and classify them instead
of combining them.

Kistler and Franz [11] presented a frequency profile (edges and paths) as a
vector so as to compare the similarity among profiles. Their proposed similarity
metric is based on geometric angle and vector distance between two vectors.
Their goal was to determine when a program has changed significantly enough to
trigger re-optimization. In our work, we use a Manhattan distance to compute a
similarity metric between two profiles. Our metric is linear in contrast to Kistler’s
similarity comparison function.

Sun et al. [12] show that an information entropy based on performance events,
such as L2 misses, could be a good metric to track changes in program phase
behavior. Our paper uses an information entropy based on frequency profiles to
determine an appropriate sampling rate for efficient adaptive profiling.
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7 Summary

This paper shows that highly accurate profiles can be obtained by merging a
number of profiles collected over repeated executions with relatively low sam-
pling frequency. It also show that simple characterization of the profile with
information entropy can effectively guide the sampling rate for a profiler. Us-
ing SPECjbb2000 benchmark, our adaptive profiler obtains very accurate profile
(94.5% similar to the baseline profile) with only 8.7% of samples in a sampling
rate of one sample per 1M instructions. Furthermore, we show that informa-
tion entropy could be used to classify different profiles obtained from different
input sets. The profile entropy-based approach provides a good foundation for
continuous profiling management and effective PGO in a pre-JIT compilation
environment.
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Abstract. The stream architecture is one of the emerging architectures
that address the memory-wall problem of modern processors. While it
is successful in the domain of multimedia, its efficiency to scientific ap-
plications is increasingly concerned. This paper implements a stream
program for Laplace transformation and evaluates its performance on
the FT64 stream processor, which is the first implementation of a 64-bit
stream processor for scientific computing. The stream program is opti-
mized against the memory hierarchy of FT64 to minimize the expensive
off-chip memory transfers. The preliminary results show that FT64 is
more efficient than the traditional cache-based processor (Itanium2) for
Laplace transformation.

1 Introduction

The increasing gap between the processor and memory is a well-known problem
in the modern processor design. The stream processors [1] [2] [3] [4] [5] are
presented to address the processor-memory gap through streaming technology.
The stream processors have demonstrated significant performance advantages
in the domains such as signal processing [6], multimedia and graphics [7]. Yet,
it has not been sufficiently validated whether stream processor is efficient for
scientific computing.

FT64 [5] is the first implementation of a 64-bit stream processor for scientific
computing. FT64’s instruction set architecture is reduced and optimized for
scientific computing. FT64’s processing unit consists of four ALU clusters, and
each of them contains four floating-point multiply-accumulate (FMAC) units.
FT64’s peak performance reaches 16GFLOPS.

This paper implements a stream program for Laplace transformation and eval-
uates its performance on the FT64 stream processor. The stream program for
Laplace transformation is constructed according to the memory hierarchies of
FT64, so that the data reuse indicated by input dependence can be exploited
in the on-chip memory hierarchies to minimize the expensive off-chip memory
transfers. The evaluation results show that the data locality of the stream pro-
gram for Laplace transformation can be well exploited by FT64 and the average
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speedup over the traditional cache-based processor (Itanium2) is more than 2.
Besides, it demonstrates a good scalability on FT64.

The rest of this paper is organized as follows. Section 2 overviews the archi-
tecture of FT64. Section 3 discusses the details of the implementation of the
stream program for Laplace transformation. In Section 4, we present the pre-
liminary experimental results over FT64 and Itanium2. Section 5 reviews the
related work. In Section 6, we conclude the paper and discuss some future work.

2 The FT64 Architecture

FT64 employs stream programming model [8]. In this model, an application is
represented by a set of computation kernels which consume and produce data
streams. Each data stream is a sequence of data records of the same type, which
can be classified into two kinds: basic streams and derived streams. Basic stream
defines a new sequence of data records while derived stream refers to all or part
of an existing basic stream. Each kernel is a program which performs the same
set of operation on each input stream element and produces one or more output
streams. Stream applications consist of stream-level programs and kernel-level
programs. A stream-level program specifies the order in which kernels execute
and organize data into sequential streams that are passed from one kernel to the
next. A kernel-level program is structured as a loop that processes element(s)
from each input stream and generates output(s) for each output stream.

FT64 is mainly composed of a stream controller (SC), a stream register file
(SRF), a micro controller (UC), four ALU clusters, a stream memory controller
(SMC), a DDR memory controller (DDRMC), a host interface (HI) and a net-
work interface (NI), as illustrated in Figure 1.

Stream 

Register File

Stream 

Controller

Host 

Interface

Stream 

Memory 

Controller

DDR 

Memory 

Controller

M
ic

r
o

 

C
o

n
tr

o
lle

r

2.4GB/s

6.4GB/s

1.2GB/s
8GB/s

16GB/s

8GB/s

4GB/s
64GB/s

C
lu

s
te

r
2

C
lu

s
te

r
1

C
lu

s
te

r
0

C
lu

s
te

r
3control path

data path

to
 o

th
er F

T
6

4

to
 o

ff-ch
ip

 m
em

o
ry

N
e
tw

o
r
k

 

I
n

te
r
fa

c
e

to Host

Fig. 1. Block diagram of FT64



54 Y. Deng et al.

FT64 runs as a coprocessor to a host through the HI. The host executes
stream-level programs, loads the streams and kernel-level programs to FT64’s
off-chip memory, and sends stream-level instructions to the SC. The SC executes
stream-level instructions. First, it loads a kernel-level program from the off-chip
memory to UC’s instruction memory through the SRF. Then, the SC loads
streams from the off-chip memory to the SRF. When the kernel-level program
and streams are ready, the SC will start the execution of the kernel-level program
in the UC’s instruction memory, and the UC controls the four clusters to process
data in a SIMD fashion. When the computation is finished, the SC will transfer
the output stream stored in SRF to the off-chip memory or to other FT64’s SRF
through the NI directly.

bank 0

bank 1

bank 3

cluster 0

cluster 1

cluster 3

SRF

bank 2 cluster 2

DSQFMAC

/

Inter-cluster network
LRF

Fig. 2. The microarchitecture of ALU clusters

The microarchitecture of the ALU clusters is shown in Figure 2. Each clus-
ter is composed of four floating-point multiply-accumulate units (FMACs), a
divide/square root unit (DSQ) and their local register files (LRFs). The four
clusters can communicate with each other through an inter-cluster network. The
SRF is a software-controlled memory hierarchy which is used to buffer the in-
put/output and intermediate streams during execution. The SRF is divided into
four banks which correspond to the four clusters respectively. Each cluster can
only access its own SRF bank.

3 A Stream Program Implementation for Laplace
Transformation

Laplace transformation is very common in scientific applications, such as partial
differential equation solver and digital signal processing. The core of Laplace
transformation is a simple two-dimensional central differencing scheme. Let s
be the source matrix for the Laplace transformation to be played on, d be the
resulting matrix, the transformation can be formulated as a two-loop-nests in
Figure 3. Each element in d is the result of subtracting 4 times of the correspond-
ing element in s from the sum of the four elements around it. Five computations
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do j  =  2, n-1
    do i =  2, n-1
        d( i, j )  =  s( i-1, j )  +  s( i, j -1)  +  s( i+ 1, j )  +  s( i, j + 1)  -  4* s( i, j )
    enddo
enddo

Fig. 3. The core of Laplace transformation

(three adds, one subtract and one multiply) are needed for one result and the
computation-to-memory ratio is O(1).

The inner and the outer loop nest of Laplace transformation both carry input
dependences. It is essential to exploit the data reuse indicated by the loop-carried
input dependences in the on-chip memory hierarchies for good performance. In
the traditional distributed parallel computers, Laplace transformation is done
by two steps. First, each column of s is distributed to each processor, where
the sum of the two rows in stride of two is calculated, resulting an intermediate
matrix. Second, each processor communicates with its neighbors to calculate the
sum of the two columns in stride of two, and yields each column of the resulting
matrix with the intermediate matrix.

The most important thing to implement Laplace transformation in a stream
processor is the data arrangement, i.e. how data streams are organized from the
original arrays. The simplest way is to take each array reference in the loop nests
in Figure 3 as one stream. But this will incur much overlap between streams and
increase the off-chip memory transfers.

Figure 4 gives the data arrangement layout in our implementation. As shown
in Figure 4(a), each column of the source matrix is taken as one data stream.
When one stream is loaded into the SRF, it is distributed across the four banks.
For example, the first element of s1 (corresponds to the first column of s), s11,
is allocated to bank0, the second element s21 is allocated to bank1, and so
on. The whole stream program for Laplace transformation consists of a series
of kernels, each of which takes three streams as input streams to produce one
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Fig. 4. The data layout of the stream program for Laplace transformation
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output stream, as shown in Figure 4(b). The first kernel (kernel 1 in Figure 4(b))
needs to load three streams to the SRF and the successive kernels only need to
load one stream to the SRF, for the other two streams have been loaded to the
SRF by their predecessors.

The kernel is structured as a loop. During each loop iteration, each cluster
reads one element from each input stream and communicates with its neighbors
to obtain the other two elements, as shown in Figure 4(c). The black arrows in
Figure 4(c) indicate the direction of communication. For example, cluster1 reads
s2n, s21 and s22 from sn, s1, s2 respectively to its LRF, then obtain s11 and s31

from cluster0 and cluster2 respectively. Actually every cluster needs to read two
elements from the second stream, for cluster3 needs the next round of element
from cluster0.

The borders are considered separately. The elements in the last row of s
which are needed to calculate the first row of d are passed to the kernels as
scalar parameters, so do the elements in the first row of s.

In this implementation, the data reuse indicted by the outer loop-carried
input dependence is exploited in the SRF and the data reuse indicated by the
inner loop-carried input dependence is exploited in the LRF through inter-cluster
communication.

4 Performance Evaluation

To evaluate the performance of the stream program for Laplace transformation,
we perform experiments on the FT64 development board. As shown in Figure 5,
the FT64 development board contains one host processor and eight FT64 stream
processors. In this preliminary work, only one FT64 is used.

To compare the performance on FT64 with that on the traditional cache-
based processor, we execute the Laplace benchmark from NCSABench [9] on an
Itanium2 based server. The Laplace benchmark is compiled by Intel’s compiler
ifort (version 9.0) with the optimization option of −O3.

Host

Bridge

FT64

Bridge

Bridge

Host

Memory

Off-chip Memory

Fig. 5. The FT64 development board
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Table 1. Architectural overview of test platforms

FT64 Itanium2

Clock 500MHz 1.6GHz

#Core 4 1

Register File 19KB 2.4KB

Local Store 256KB -

Caches - L1: 16KB; L2: 256KB; L3: 6MB

Off-chip BW 6.4GB/s 6.4GB/s

Table 1 gives the architectural parameters of the two test platforms.
The execution time is obtained by inserting the clock-fetch assembly instruc-

tions. If the data size of the program is small, we eliminate the extra overheads
(such as system calls) by means of executing it multiple times and calculating
the average time consumption. As I/O overheads are hidden in our experiments,
the CPU time is nearly equal to the wall-clock time.

The number of operations per second (GOPS) can be used to evaluate the per-
formance of the stream processor. There are two kinds of operations: computa-
tional and non-computational operations. The computational operations include
adds, subtracts and multiplies, etc. The non-computational operations include
communications and conditional selections, etc. Although the non-computational
operations do not contribute to the result directly and inflate the total number
of operations performed, they are necessary to implement the data reuse and
reduce the overall execution time.

Figure 6 illustrates the number of computational and non-computational
GOPS as the data size (N ∗ N) increases. The GOPS increases before the data
size reaches 256 ∗ 256, and changes little after that. This is because when the
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Fig. 7. Fractions of computation time, memory access time and overhead to the total
execution time

data size is small, the memory access and overhead take a great fraction of the
execution time. The computational operations take only half of the total GOPS.
The maximal computational GOPS is 1.45, approximately 9% of the peak per-
formance of the FT64 processor.

The execution time of a stream program on the stream processor is determined
by the following factors: computation time, memory access time, overheads and
the overlapping between them. The overheads include the cost to maintain the
SRF allocating information, read/write the control registers and initialize mem-
ory load/store. Figure 7 gives the fractions of computation time, memory access
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time and overheads in the total execution time as the data size increases. The
totals exceed 100% due to operation overlapping. As can be seen in Figure 7, the
overheads occupy a considerable percentage of the total execution time when the
data size is below 256∗256. As the data size increases, the overheads decrease and
are totally hidden in the memory access time. The overlapping degree between
computation and memory access is low when the data size is below 256 ∗ 256.
This is because the execution time of a kernel is too short to hide the overhead
to start a memory operation when the data size is below 256 ∗ 256. After that,
the memory access time occupies nearly 100% of the total execution time and
thus the others are hidden in it.

Figure 8 illustrates the ratios of the actual memory transfers to the theo-
retically minimal ones of varying the data size. The actual memory transfers
are very close to the theoretical minimum (only 2% − 8% more), which means
that our stream program for Laplace transformation has eliminated most extra
memory transfers.

As the stream-level program for Laplace transformation is structured as a
loop of kernels, the execution time will be affected by the loop unrolling times.
As shown in Figure 9, the execution time at the data size of 512 ∗ 512 decreases
gradually as the loop unrolling times increases. This is because more data reuse
can be captured in one loop iteration as the loop unrolling times increases. To
achieve the best performance, complete loop unrolling is used in experiments.

LRF (or SRF) -to-memory throughput ratio is the ratio of the data through-
put in the LRF (or SRF) to that in the off-chip memory. Figure 10 shows the
LRF/SRF-to-memory throughput ratios of varying data size. These metrics rep-
resent the LRF and SRF locality exploited by the stream processors. It can be
observed that the LRF- and SRF-to-memory throughput ratios become stable
when the data size is larger than 192 ∗ 192. The average LRF- and SRF-to-
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memory throughput ratio is about 11 : 2.5 : 1, which is far from the ratio
provided by the hardware (85 : 10 : 1). This implies that the most pressure of
the memory hierarchy still lay on the off-chip memory.

Figure 11 gives the respective execution time speedup attained by FT64 over
Itanium2 processor of varying the data size. When the data size is below 128∗128,
the performance of FT64 is poorer than Itanium2, due to the overheads incurred
by short streams. After that, the speedup increases as the data size increases and
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remains 2 to 2.6 after 192∗192. This demonstrates the good scalability of Laplace
transformation on the FT64 processor.

5 Related Work

Though media applications are becoming the dominate consumer of stream pro-
cessors [3] [8] [7] [10], there is an important effort to research whether scien-
tific applications are suited for stream processors. Some linear algebra equation
solvers, dense matrix applications and some mathematic algorithms such as tran-
sitive closure have been implemented on Imagine and Merrimac [2] [11] [12] [13].
The previous works on applying the stream processors to scientific applications
have some shortages. Imagine is 32-bit stream processor which is designed for
media applications and its support to scientific applications is insufficient. Mer-
rimac has not yet been taped out and only simulator can be used. FT64 is the
first implementation of a 64-bit stream processor for scientific computing and
the work in this paper is the original evaluation on the real chip.

6 Conclusion and Future Work

In this paper, we implement the stream program for Laplace transformation and
evaluate its performance on the FT64 stream processor. The stream program for
Laplace transformation is constructed according to the memory hierarchies of
FT64, so that the data reuse indicated by input dependence can be exploited
in the on-chip memory hierarchies of FT64 to minimize the expensive off-chip
memory transfers. The evaluation results show that FT64 is more efficient than
the traditional cache-based processor (Itanium2) for Laplace transformation.

There are a number of interesting but challenging research directions in this
area. We are considering extending the stream program for Laplace transfor-
mation to a parallel computer system based on multiple FT64s. More scientific
applications are going to be evaluated on FT64. Besides, we will take account
of developing an automatic compile tools to generate efficient stream programs
from the existing scientific programs.
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Abstract. Data tiling is an array layout transformation technique that
partitions an array into smaller subarray blocks. It was originally pro-
posed to improve the cache performance of regular loops. Recently,
researchers have applied this technique to scratchpad memory (SPM)
allocation. Arrays whose sizes exceed a given SPM size can be tiled or
divided into smaller subarray blocks or tiles and the program perfor-
mance can be significantly improved by placing the smaller subarray
tiles in SPM. Existing data tiling techniques are applicable to regularly-
accessed arrays in individual loop nests. In embedded applications, arrays
are often accessed in multiple loop nests via possibly aliased pointers.
Tiling arrays in a loop nest alone will often affect the tiling and alloca-
tion decisions for arrays accessed in other loop nests. Moreover, tiling
arrays accessed via aliased pointers is difficult since their access patterns
are unknown at compile time. This paper presents a new data tiling ap-
proach to address these practical issues. We perform alias profiling to
detect the most likely memory access patterns and use an ILP solver to
select the best tiling schemes for all loop nests in the program as a whole.
We have integrated data tiling in an existing SPM allocation framework.
Our preliminary experimental results show that our approach can im-
prove significantly the performance of a set of programs selected from
the Mediabench suite.

1 Introduction

The effectiveness of memory hierarchy is critical to the performance of a com-
puter system. Traditionally microprocessors use cache to overcome the ever-
widening gap between the processor speed and memory speed. However, cache
introduces two major problems. First, it consumes a significant amount of proces-
sor power due to its complex tag-decoding logic. Second, it makes it very difficult
to compute the worst-case execution time (WCET) of a program. In real-time
systems, the schedulability analysis is based on the WCETs of all tasks. There-
fore, many real-time systems do not use any cache. To overcome these two major
problems, scratchpad memory (SPM) has been introduced. SPM consists of on-
chip SRAM only. Therefore, it is much more energy efficient than cache [1]. Since
SPM is managed by the compiler, it provides better time predictability. Given
these advantages, SPM is widely used in embedded systems. In some high-end
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embedded processors such as ARM10E, ColdFire MCF5 and Analog Devices
ADSP-TS201S, a portion of the on-chip SRAM is used as an SPM. In some
low-end embedded processors such as RM7TDMI and TI TMS370CX7X, SPM
has been used as an alternative to cache.

Effective utilisation of SPM is critical for an SPM-based system. Research on
SPM management has been focused on data allocation. The objective is to place
most frequently used data in SPM so that the average execution time or the total
energy consumption of a program is minimised [8,7,10,11,5]. Most existing SPM
allocation schemes place data objects in SPM only if they can be stored entirely
in SPM. Therefore, SPM cannot be used by the frequently accessed arrays that
are larger than SPM, resulting in lower SPM utilisation and slower program ex-
ecution. Since many applications have large arrays that are frequently accessed,
new approaches are needed to partition them into smaller subarray blocks so
that the smaller subarrays can be placed in SPM.

Data tiling or data shackling [6] is an array layout transformation technique
that partitions a large array into smaller subarray blocks. It was originally pro-
posed to improve the cache performance of regular loop kernels. Data tiling is
typically applied together with loop tiling [12]. Loop tiling partitions the iter-
ation space of a loop nest into iteration space tiles so that different subarray
blocks will be accessed in different iteration space tiles. Loop tiling may change
the order of array accesses in a loop nest. A legal tiling must preserve all de-
pendences in the program. As a result, data tiling is usually restricted to arrays
with regular access patterns. In the past, different data tiling techniques [2,6,4]
have been proposed. Furthermore, Kandemir et al. [5] have applied data tiling to
SPM allocation. Like other data tiling approaches, their approach targets regu-
larly accessed arrays in loop kernels. It tiles arrays accessed in a particular loop
nest and copies the small data tiles to SPM during program execution. The ob-
jective is to maximise the utilisation of SPM while minimising the incurred copy
cost for a particular loop nest. Although the proposed technique can provide
near-optimal results for certain loop nests, it has two major deficiencies:

1. It considers individual single loop nests in isolation. In a program with mul-
tiple loop nests, tiling arrays in one loop nest alone may often affect the
tiling and allocation decisions for arrays accessed in others. In other words,
the best tiling scheme chosen for a loop nest may not be desirable when all
the loop nests in the program are considered as a whole. To maximise the
overall SPM utilisation while minimising the copy cost for a program, we
need to consider all arrays accessed in different loop nests in the program
and select the best tiling schemes for all loop nests in concert.

2. It does not handle arrays that are accessed via aliased pointers. In many
applications, arrays are often accessed via aliased pointers. Applying data
tiling to those arrays can sometimes be difficult partly because their mem-
ory access patterns are uncertain at compile time and partly because code
rewriting for a tiling transformation can be complex.

In this paper, we present some preliminary results on applying a new approach
to applying data tiling to a whole program in SPM allocation. Unlike previous
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work that is focused on a single loop nest, our approach considers all loop nests
in a program simultaneously. We formulate the tiling problem for a program
as an ILP (Integer Linear Programming) problem and use an ILP solver to
find the optimal tiling schemes for all loop nests simultaneously as a global
optimisation problem. We use an existing SPM allocation algorithm [8] to place
all arrays, including the partitioned subarrays, in SPM. Furthermore, we use
pointer analysis and profiling information to detect the most likely memory
access patterns for pointer accesses and tile memory objects accordingly. As a
result, some runtime checks are inserted to preserve all data dependences in the
original program for a tiling transformation. In comparison with existing work
on data tiling [2,6,5,4], we are presently able to tile some loop nests with pointer
aliases. However, more research is needed to enlarge the scope of programs that
can be handled. Our preliminary results obtained for a set of programs selected
from the Mediabench suite are very encouraging. Our approach can improve
significantly the performance of these programs in an SPM-based system.

The rest of the paper is organised as follows. Section 2 addresses some major
challenges in data tiling. Our approach is then introduced in Section 3. We
evaluate the effectiveness and efficiency of this approach in Section 4. Section 5
reviews some related work and Section 6 gives some future work.

2 The Challenges

We use an example to illustrate the two challenges we address in this work when
applying data tiling to whole programs in SPM allocation. One is concerned
with selecting the best tile sizes for arrays accessed in multiple loop nests simul-
taneously. The other lies in how to deal with the arrays that may be accessed
via aliased pointers when these arrays are tiled.

This example, shown in Fig. 1(a), is abstracted from the benchmark unepic
in Mediabench. There are two single loops executed in two separate functions.
In the loop contained in unquantize pyr, the global array lo filter is accessed.
In the loop contained in unquantize image, some arrays may be accessed via
two pointers q im and res; these can be two different arrays or a common array,
which may also be the global array lo filter. It is clear that optimising either
loop by data tiling in isolation may not be optimal for both loops.

Let us now consider some complications that arise when tiling loops with
aliased pointer accesses. In the loop contained in function unquantize image,
memory objects are accessed via two pointers q im and res. Although it appears
that two different arrays are accessed via two pointers q im and res, it is possible
that only one array (which could be lo filter) is accessed by both pointers at
different offsets. Therefore, it is not trivial to tile the arrays that the two pointers
point to while also preserving all data dependences in the original program. In
addition, code rewriting for a given tiling transformation can be quite complex.

Fig. 1(b) illustrates one possible solution when the program is optimally tiled.
The loop in unquantize pyr is not tiled. Note that the global array lo filter can
be regarded as being tiled with a tile size equal to its original array size. The
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int lo filter[ ];
void unquantize pyr(BinIndexType* q im, int* res, int im size) {

for (. . . ) {
. . . = lo filter[. . . ];
unquantize image(q im, res, im size);

}
}
void unquantize image(BinIndexType* q im, int* res, int im size) {

for (i = 0; i < im size; i + +) {
res[i] = q im[i] . . .
. . .

}
}

(a)

int lo filter[ ];
void unquantize pyr(BinIndexType* q im, int* res, int im size) {

for (. . . ) {
. . . = lo filter[. . . ]
unquantize image(q im, res, im size);

}
}
void unquantize image(BinIndexType* q im, int* res, int im size){

// tile size is Sa for both res and q im
if (res and q im point to the same array) {

for (i = 0; i < im size; i + +) {
res[i] = q im[i] . . .
. . .

}
}
else {�

�

�

�

for (it = 0; it < im size; it = it + Sa) {
read tile q im[it : it + Sa − 1] → q im′[0 : Sa − 1]
for (i′ = 0; i′ < Sa; i′ + +) {

res′[i′] = q im′[i′] . . .
. . .

}
write tile res′[0 : Sa − 1] → res[it : it + Sa − 1]

}
}

}

(b)

Fig. 1. (a) A code snippet abstracted from the benchmark unepic in Mediabench. For
simplicity, we assume that im size is a multiple of Sa. (b) The modified code after
tiling q im and res with a tile size of Sa (the tiled code is boxed).
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loop in unquantize image is tiled only when two pointers q im and res are not
aliases. A runtime test will be performed to determine whether the original loop
or the tiled version will be executed. To avoid unnecessary runtime overhead,
such code will be generated only if the two pointers frequently point to different
memory objects based on profiling information. In the tiled code, the arrays
pointed to by q im and res are tiled with a common size of Sa. Two new arrays,
called tile arrays and denoted q im′ and res′, have been introduced to store
all data elements accessed in the partitioned subarray tiles for q im and res,
respectively. At the beginning of loop i′, a subarray of q im is copied to q im′.
At its end, res′ is copied to a subarray of res.

This example shows that allocation of tile arrays such as q im′ and res′ in
SPM may affect the allocation of other arrays in the program. In addition,
selecting a large tile size for a tile array may decrease the chances for the global
array lo filter to be placed in SPM. Therefore, we need to consider the SPM
size, the cost and benefit of tiling certain arrays, and the access frequencies of
all other arrays in the program together to select the best tile sizes for all arrays.

3 Our Approach

In embedded applications (e.g., programs in C/C++), array accesses may take
different forms. An array may be accessed by using its name and an index or via
aliased pointers. So we need to identify all arrays of different forms in a program.
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Fig. 2. A framework for applying data tiling to SPM allocation

As illustrated in Fig. 2, our approach consists of three components: Loop
Analyser, ILP Solver and SPM Allocator. First, the loop analyser analyses each
loop nest based on pointer analysis and profiling information. It identifies all
the arrays that are either implicitly or explicitly accessed. Next, the ILP solver
formulates the data tiling problem for a program as an ILP problem and uses an
ILP solver to find which arrays should be SPM-resident and the best tile sizes
for all SPM-resident tile arrays (such as q im′ and res′ in Fig. 1(b)). Lastly, the
SPM allocator places in SPM all the SPM-resident arrays suggested by the ILP
solver by using an existing SPM allocation framework [8].
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In our current implementation, we assume that the live ranges of all arrays
(including tile arrays) satisfy the so-called containment relationship as defined
in [8]. That is, two live ranges must be such that either they are disjoint or one
contains the other. In this case, all SPM-resident arrays determined by the ILP
solver can always be placed in SPM by the SPM allocator. If some live ranges do
not satisfy this containment relationship, there are two options. We can apply
the approaches reported in [8,7] to obtain a possibly sub-optimal solution, in
which case, some arrays are spilled to off-chip memory even if they are suggested
to be placed in SPM by the ILP solver. Alternatively, the ILP solver and SPM
allocator can be merged and solved optimally based on ILP after some additional
constraints on the placements of SPM-resident arrays are added.

3.1 Loop Analyser

Loop tiling concentrates on iteration space tiling [12]. Data tiling focuses on tiling
the data space of an array. In general, data tiling is done together with loop tiling
[2,6,4,5] so that when each iteration space tile is executed, different subarray tiles
of an array can be accessed for improving data locality in a program.

Our loop analyser analyses each loop nest L to identify all the arrays that
are either explicitly or implicitly accessed and a subset of these arrays that are
considered to be tiled at L. For each array P that may be tiled at L, we introduce
an array TLP , called tile array, to store the current values of a subarray tile of
P . In theory, there can be many possible choices for STLP

, known as the tile
size of TLP . However, this may cause an ILP solver to spend too much time on
finding a feasible solution. Therefore, for each tile array TLP , we pre-define a set
of values to confine our search for the best tile size for TLP .

In this work, all arrays accessed in a particular loop nest will be tiled by
rectangular tiles with possibly different tile sizes. The tile size used for tiling the
loop nest is assumed to be deduced from the tile sizes for all tile arrays. How
to tile a given loop nest this way is likely dependent on the computation and
memory access characteristics of the loop nest.

In Fig. 1(b), q im′ and res′ are tile arrays introduced to tile q im and res,
respectively. The tile sizes for both tile arrays happen to be identical and are
denoted Sa, which is also used to tile the enclosing loop in unquantize image
into a two-dimensional loop nest in the tiled code.

3.2 ILP Solver

We use an ILP formulation to model the data tiling problem for a whole program
in SPM allocation. Let P = {P1, P2, . . . , Pn} be a subset of these arrays identified
as tile arrays by the loop analyser. Let T = {T1, T2, . . . , Tm} be the set of tile
arrays introduced by the loop analyser to tile some arrays in P . So U = P

⋃
T

represents the set of all array candidates to be considered in SPM allocation.
Each tile array Ti may be aliased with some or all the arrays in P . Let QTi,Pj ,

where 1 � j � n, be the probability that each array access via Ti turns out to
be an array access to Pj . This information can be obtained via profiling.
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For each SPM candidate Ui ∈ U , we define a binary variable XUi to denote
whether Ui is placed in SPM or not:

XUi =

{
1 Ui is placed in SPM
0 Ui is not placed in SPM

(1)

In practical applications, the tile sizes for all tile arrays in a particular loop
nest L can be different but are related. Let all their tile sizes be specified
by rL independent integer variables represented by an rL-dimensional vector
(SL,1, SL,2, . . . , SL,rL), whose value will be searched from a pre-defined set:

(SL,1, SL,2, . . . , SL,rL) ∈ T ileSizeSetL (2)

The tile size for tiling L is determined from (SL,1, SL,2, . . . , SL,rL) and the loop
bounds of L. If both are given, then the total number of copy operations for a
copy statement (like read tile or write tile in Fig. 1(b)) will be known.

We perform a cost-benefit analysis to decide whether an array should be
placed in SPM or not. We distinguish two kinds of arrays: those in P and those
in T . The benefit of placing an array Pi ∈ P in SPM can be modelled as:

BPi = Number of accesses to Pi in the program × β (3)

where β is the benefit of turning a single memory access to the off-chip memory
into one to the SPM (in cycles). For a tile array Ti ∈ T , however, there will be
no benefit to place Ti in SPM for those accesses to Ti that turn out to be the
accesses to an array Pj ∈ P such that Pj has already been placed in SPM (since
Ti is aliased to Pj). Therefore, the benefit of placing Ti in SPM is:

BTi =Number of accesses to Ti in the program×β×

⎛

⎝1 −
∑

Pj∈P
(QTi,Pj ×XPj)

⎞

⎠

(4)

The cost of placing an array Pi ∈ P in SPM, denoted CPi , is simply set to be
0 since Pi will be stored in SPM throughout its lifetime:

CPi = 0 (5)

Thus, no array copying between SPM and off-chip memory is needed.
The cost of placing a tile array Ti ∈ T in SPM is the cost incurred in all copy

operations inserted in the tiled code for copying all subarrays of all aliased array
that have been tiled into Ti between SPM and off-chip memory (cf. Fig. 1(b)).
When copying a subarray tile to SPM, we assume that the underlying architec-
ture supports DMA transfer so that a continuous memory block can be copied
to SPM by one DMA operation. The DMA copy cost of transferring a memory
block of n bytes size is Cs +Ct ×n, where Cs is the DMA start up cost and Ct is
the DMA transfer cost per byte. Therefore, the cost of placing a one-dimensional
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tile array Ti in a loop nest L with a tile size of SizeTi(SL), denoted CTi , in SPM
is approximated by:

CTi = copy count(L, SL) × (Cs + Ct × SizeTi(SL)) (6)

Here, SL ∈ T ileSizeSetL and copy count(L, SL) represents the number of DMA
operations for Ti between SPM and off-chip memory. In this one-dimensional
case, SizeTi(SL) is a particular component of SL. In general, SizeTi(SL) is
determined by several components in SL depending on the dimensionality of Ti.
The cost formulas for higher-dimensional tile arrays can be developed similarly.

Our objective function is to maximise the difference between the sum of all
benefits and the sum of all costs involved in tiling a given program:

∑

Pi∈P
(BPi × XPi) +

∑

Ti∈T
(BTi × XTi) −

∑

Ti∈T
(CTi × XTi) (7)

As in any linear optimisation problem, a set of constraints is also defined.
We require that, at any program point during program execution, the sum of
sizes of all SPM-resident arrays be no larger than the given SPM size. Such
information can be approximated by examining the interference graph formed
by all SPM candidates. For every maximal clique C in the graph, we have the
following constraint:

∑

Ui ∈ U is an array node in C

(MUi × XUi) � SPM size (8)

where MUi , which represents the size of array Ui, is further refined below.
The above formulation cannot be fed into an ILP solver directly. However,

this can be overcome by transforming all non-linear constraints into linear ones.
Let us illustrate this process for a loop nest L by assuming that all arrays
accessed in L are one-dimensional. First of all, (2) and (6) can be linearised
by introducing |T ileSizeSetL| binary variables. Let the binary variable GL,j

be 1 if all tile arrays in L are tiled by tile sizes using the values in SL,j ∈
T ileSizeSetL and 0 otherwise. Thus,

∑
SL,j∈TileSizeSetL

GL,j = 1. We can then
replace CTi in (7) by

∑
SL,j∈TileSizeSetL

(GL,j ×copy count(L, SL,j)× (Cs +Ct ×
SizeTi(SL,j))). Since SL,j is now a constant vector, SizeTi(SL,j) is constant. In
addition, copy count(L, SL,j), which depends on only the loop bounds of L, is
also a constant (or a parameterised constant). Next, MUi in (8) is defined as
follows. If Ui ∈ P , then MUi is the array size of Ui. If Ui ∈ T , then MUi accessed
in a loop nest L is replaced by

∑
SL,j∈TileSizeSetL

(GL,j × SizeUi(SL,j)). Finally,
the resulting formulation will still consist of products of binary variables. They
can also be linearised by introducing extra binary variables. Such transformation
techniques are standard and thus omitted. A commercial ILP Solver, CPLEX,
is used to solve the ILP problem for tiling a given program.

3.3 SPM Allocator

After the ILP solver has determined which arrays should be SPM-resident and
the tile sizes for those SPM-resident tile arrays, we will now determine the SPM
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addresses for the SPM-resident arrays. This will be realised using an SPM al-
location algorithm proposed by Lian et al. [8]. The SPM allocation algorithm
formulates the SPM allocation problem as an interval colouring problem [3].

Given that for every two SPM-resident arrays, their live ranges are either
disjoint or containing-related, all SPM-resident arrays can be placed in SPM.

4 Experimental Results

4.1 Benchmarks

We have used six benchmarks from Mediabench as shown in Table 1. For each
benchmark, Column 3 gives the number of arrays in each benchmark. Column 4
shows the total size of all arrays in each benchmark. Arrays that are not accessed
in a benchmark are not counted. In the two benchmarks, epic and unepic, two
very large arrays (larger than 64K bytes) that are accessed infrequently cannot
be tiled. Therefore, they are excluded in SPM allocation. In Table 1, only the
original arrays in a program are considered when the data set size for the program
is calculated; the tile arrays introduced by data tiling are excluded. Benchmarks
with different data set sizes are evaluated with different SPM sizes.

Table 1. Benchmarks from MediaBench

Benchmark #Lines #Arrays Data Set of Arrays (Bytes) SPM Sizes (Bytes)

rawcaudio 741 5 2.9K {512, 1024, 2048, 4096}
rawdaudio 741 5 2.9K {512, 1024, 2048, 4096}

epic 3524 4 344 {256, 512, 1024, 2048}
unepic 3524 4 344 {256, 512, 1024, 2048}

mpeg2encode 8304 62 9.2K {1024, 2048, 4096, 8192}
mpeg2decode 9832 76 21.8K {1024, 2048, 4096, 8192}

All programs are compiled into assembly programs for the Alpha architecture
using the SPM allocation framework described in [8]. These assembly programs
are then translated into binaries on a DEC Alpha 20264 architecture. The pro-
filing information for MediaBench is obtained using the second data set provided
by the MediaBench web site. These benchmarks are evaluated using the data
sets that come with their source files.

4.2 Performance Evaluation

We have modified SimpleScalar in order to carry out the performance evaluations
for this work. As in [7,8], our target architecture has only on-chip SPM and off-
chip memory. There are four parameters involved in the execution model. The
cost of transferring n bytes between SPM and off-chip memory is approximated
by Cs + Ct × n in cycles, where Cs is the startup cost and Ct is the cost per
byte transfer. Two other parameters are Mspm and Mmem, which represent the
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Fig. 3. Performance improvements when data tiling is applied

number of cycles required for one memory access to the SPM and the off-chip
memory, respectively. In all our experiments, the values of the four parameters
are set to be Cs = 100, Ct = 1, Mmem = 100 and Mspm = 1.

We have evaluated the effectiveness of our data tiling approach by comparing
it with the case when data tiling is not used. All six benchmarks were evalu-
ated with four different SPM sizes given in Table 1, denoted as SPM SIZE1,
SPM SIZE2, SPM SIZE3 and SPM SIZE4 from the smallest to the largest size.

As shown in Fig. 3, all benchmarks exhibit significant performance improve-
ments. For rawcaudio and rawdaudio, speedups of more than 130% are observed
when the SPM size is set to 1024 or 2048 bytes. However, there are no perfor-
mance improvements for these two benchmarks when the given SPM size is 4K
bytes. The reason can be explained using the SPM hit rates as shown in Fig. 4.

Fig. 4 illustrates the advantages of applying data tiling in terms of SPM hit
rate improvements. As a general trend, there are significantly more access hits
in SPM when data tiling is applied except for rawcaudio and rawdaudio when the
SPM size is set to 4K bytes. In these two exceptional cases, all arrays can be
placed in SPM without resorting to tiling. So data tiling is not helpful in these
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two cases. The other four benchmarks enjoy significant speedups and SPM hit
rate increases for all SPM configurations.

5 Related Work

Existing SPM allocation approaches are either static or dynamic, depending on
whether an array can be copied into and out of SPM during program execution or
not. A large number of early approaches are static. A dynamic approach can often
outperform an optimal static one. Some dynamic approaches exist [10,11,7,8].
In [11], Verma et al. use an ILP formulation to find which memory object should
be placed in SPM. In [10], Udayakumaran and Barua present a set of heuristics
and apply them to a set of benchmarks. Lian et al. [7,8] have proposed two
approaches. The first approach [7] transforms the SPM allocation problem into a
well-understood register allocation problem and the second approach [8] converts
the SPM allocation problem into an interval colouring problem. The data tiling
techniques proposed in this paper can be applied in the above SPM allocation
schemes to further improve SPM utilisation.

Data tiling [6] is an array layout transformation technique that partitions the
data space of an array into smaller tiles. The technique was originally proposed
to improve cache performance because the partitioned data tiles are more likely
to fit in cache blocks. Various techniques on how to effectively tile array accesses
in different loops kernels have been proposed [2,4,9].

Recently, researchers have applied data tiling to SPM allocation. Kandemir
et al. [5] exploited this technique in SPM allocation. Their approach partitions an
array into tiles, then copies the tiles to SPM during program execution. Loop and
data transformations are mentioned in their paper to improve the data reuse of
each tile so that the copy cost can be minimised. Chunhui et al. [13] also proposed
an approach that combines loop tiling and data tiling for SPM-based systems.
Both approaches target on individual loop nests only and do not handle arrays
accessed via aliased pointers. Our approach is the first one that handles multiple
loop nests consisting of arrays that may be accessed via aliased pointers.

6 Conclusion

Data tiling was originally proposed to improve the cache performance of regular
loops. Recently, researchers have applied this technique to scratchpad memory
allocation. However, previous data tiling approaches are focused on a single loop
nest only. A good tiling scheme for a particular loop nest may be a bad one
for other loop nests due to the live range interferences of arrays. In addition,
previous works cannot handle arrays accessed via aliased pointers. In this paper,
we have proposed a new data tiling approach. Our approach formulates the data
tiling problem for a whole program as an ILP problem and uses an ILP solver to
find the optimal tiling schemes for all loop nests in the program simultaneously.
Compared to previous approaches, our approach has two unique features. First,
it tiles all loop nests in concert. Second, it can handle arrays accessed via aliased
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pointers. Validation using benchmark programs has confirmed the effectiveness
of our approach. One future work is to generalise our approach by considering
non-rectangular tiles. Another is to generalise our approach to tile loop nests
whose arrays may be accessed by more complex alias relations.
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Abstract. In this paper, we describe the basics of NAND flash memory and 
describe the evolution of its interface to facilitate easy integration, to provide 
high bandwidth, to offer disk-like interface, and/or to guarantee interoperability. 
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1   Introduction 

This paper describes the basics of NAND flash memory and explains the evolution of 
its interface. The paper is organized as follows. Section 2 explains a high-level 
interface of NAND flash memory along with its peculiar features. Then in Section 3, 
we describe the evolution of NAND flash memory interface to facilitate easy 
integration, to provide high bandwidth, to offer disk-like interface, and/or to 
guarantee interoperability. Finally, we offer conclusions in Section 4. 

2   NAND Flash Memory 

Fig. 1 gives a high-level interface of a NAND flash memory, the type of flash 
memory used for mass storage. The NAND flash memory consists of a set of blocks 
that in turn consist of a set of pages where each page has the data part that stores the 
user data and the spare part that stores meta-data associated with user data such as 
ECC. Although different sizes may be used, currently the most popular block size is 
128 Kbytes consisting of 64 pages of 2 Kbytes [1]. There are three basic operations to 
NAND flash memory: read page, program page, and erase block. The read page 
operation, given the chip number, the block number, and the page number returns the 
contents of the addressed page, which takes about 20 us excluding the data transfer 
time. Likewise, the program page operation writes the supplied contents to the target 
page and takes about 200 us, again excluding the data transfer time. Unlike a write 
operation to other types of storage medium, the program operation can change the 
stored bits from 1 to 0 only. Therefore, the write operation is implemented by 
selectively changing bits from 1 to 0 to match the supplied contents assuming all bits 
                                                           
∗ This work was supported by the IT R&D program of MIC/IITA. [2006-S-040-01, Develop-

ment of Flash Memory-based Embedded Multimedia Software]. 
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in the target page are 1’s before the program operation. In flash memory, the only way 
to change a bit in a page from 0 to 1 is to erase the block that contains the page. The 
erase operation sets all bits in the block to 1 and it takes about 2 ms.  
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Fig. 1. NAND flash memory chip 

One notable characteristic of NAND flash memory is that it is allowed to have a 
limited number of bad blocks at the manufacturing time to improve the yield. 
Moreover, additional blocks become bad at run time. Another notable characteristic is 
that NAND flash memory has a limit to the number of times a block can be erased 
and re-written, typically in the range of 10,000 to 100,000 times. 

3   NAND Flash Memory Interfaces 

3.1   Conventional NAND Flash Interface 

Fig. 2 shows the interface for conventional NAND flash memory [1]. The chip enable 
signal (CE) enables the chip to respond to other signals. The I/O signals (I/O7~I/O0) 
carry not only data but also commands and addresses, which helps reduce the pin 
count. To distinguish among data, address, and command, the CLE and ALE signals 
are used. For example, when CLE is asserted, it means that a command is currently on 
the bus. The two strobe signals, WE and RE signals, are for clocking data in and out 
of NAND flash memory, respectively, in a byte-serial fashion. 

 

Fig. 2. Conventional NAND flash interface 
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3.2   OneNAND Interface 

One of the problems of the conventional NAND flash interface is that it requires a 
dedicated interface of its own. This results in either (1) an increased pin count of the 
processor when the processor has a dedicated interface to the NAND Flash memory 
or (2) a degraded performance when the processor uses GP I/O (General Purpose 
Input/Output) pins to access the NAND flash memory. 

 

Fig. 3. OneNAND Interface 

To address the problem above, OneNAND flash memory was introduced in 2005 
that uses a traditional static memory interface as shown in Fig. 3 [2]. OneNAND uses 
memory-mapped I/O to access command registers such as for flash commands and 
addresses and also for status registers such as for program/erase status. In addition, 
OneNAND has on-chip SRAM for booting purposes and also for buffering data in 
and out of flash memory. These features together with the high density and high 
program/erase speeds of NAND flash memory make OneNAND an attractive storage 
choice for mobile handsets and PDAs. 

3.3   Hyper Link NAND Flash Interface 

Both the conventional NAND flash interface and the OneNAND interface use a 
shared bus topology to connect multiple chips. This shared bus topology, although 
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Fig. 4. Hyper Link NAND Flash Interface 
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simple, has an upper limit on the bandwidth. In addition, the shared bus limits the 
number of chips that can be connected to the bus due to signal integrity problems. 
Because of this scalability problem, shared bus-based NAND flash interface cannot 
meet the demanding requirements of high capacity and high performance mass 
storage applications such as solid state disks (SSDs). 

To address the scalability problem, the Hyper Link NAND flash interface has been 
proposed that connects multiple chips in a daisy-chain fashion using multiple point-
to-point serial links (cf. Fig. 4) [3]. Each point-to-point link carries packets containing 
commands, addresses, and data at speeds up to 800 MB/s. 

3.4   Block-Oriented NAND Flash Interface 

As explained in Section 2, NAND flash memory provides operations that are not 
compatible with the interface provided by hard disk drives known as the block device 
interface that involves an overwrite semantics in the case of write operation. The 
block device interface has been a de facto standard for accessing storage devices 
mainly because of the dominance of hard disk drives as storage devices since their 
introduction in 1956 by IBM. 

To bridge the gap between the operations provided by NAND flash memory and 
those required by the block device interface, a software module called the Flash 
Translation Layer (FTL) is commonly used. The main functions of the FTL are (1) 
dynamic remapping between sectors (units of 512 bytes visible at the block device 
interface) and physical blocks/pages in NAND flash memory, (2) wear-leveling that 
evens out the erase counts of physical blocks, and (3) bad block management.  

By incorporating a processing element in the same package as NAND flash 
memory and implementing the FTL using the processing element, the block interface 
can be provided. This is the approach taken by MoviNAND by Samsung [4] and 
iNAND by SanDisk [5], and it greatly simplifies the integration of NAND flash 
memory into the system and improves the storage system performance by offloading 
the FTL from the host processor. 

3.5   ONFI (Open NAND Flash Interface) 

One serious problem of the NAND flash industry has been the lack of standards for 
multi-sourced NAND flash memory chips. Although suppliers of NAND flash 
memory use similar command sets and electrical specifications, there are subtle 
differences that prohibit NAND flash memory chips from different manufacturers to 
be “true” drop-in replacements of each [6]. 

The lack of standardization of NAND flash memory is being addressed by the 
Open NAND Flash Interface (ONFI) organization whose goal is to define a uniform 
NAND flash component interface. ONFI has published standards that define a 
common command set, timing parameters, and pin-outs for ONFI-compliant NAND 
flash memory chips. One notable feature of the ONFI standard is a Read Parameter 
Table that self-describes the functionalities of the NAND flash device, a feature very 
similar to the “identify drive” feature in hard disk drives. 
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4   Conclusion 

In this paper, we have explained the basics of NAND flash memory and described the 
evolution of its interface. The evolution has been directed to facilitate easy 
integration, to provide high bandwidth, to offer disk-like interface, and/or to 
guarantee interoperability. Although there is an on-going standardization effort by the 
ONFI organization, it is expected that multiple heterogeneous interfaces will co-exist 
for the time being, and an interim solution such as the one proposed in [7] that 
provides a consistent software/hardware interface to NAND flash memory out of 
heterogeneous interfaces seems to be appropriate. 
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Abstract. Multi-core Digital Signal Processors (DSP) have significant requirements 
on data storage and memory performance for high performance embedded 
applications. Scratch-pad memories (SPM) are low capacity high-speed on-chip 
memories mapped with global addresses, which are preferred by embedded 
applications than traditional caches due to their better real-time characterization. 
We construct a new Fast Close-Coupled Shared Data Pool (FCC-SDP) for our 
multi-core DSP project based on SPMs. FCC-SDP is organized as multi-bank 
parallel structure with double-bank interleaving access modes, and provides a 
fast transmission path for fine-grain shared data among DSP cores. We build the 
behavior simulator of FCC-SDP and make design realization. Simulation 
experiments with several typical benchmarks show that FCC-SDP can well 
capture the fine-grain shared data in multi-core applications, and can achieve 
average speedup ratio of 1.1 and 1.14 compared with traditional shared L2 caches 
and DMA transmission modes respectively. 

1   Introduction 

Multi-core Digital Signal Processors (DSP), such as OMAP ®, are recently emerging 
multi-processor SoCs for high performance embedded applications. Multi-core DSPs 
need much higher memory bandwidth and more flexible memory structure to meet the 
requirement of parallel computations than traditional single-core DSPs. It is critical to 
ensure most data requests fulfilled by on-chip memories, as the latency and power 
consumption of accessing off-chip memories is becoming intolerable. 

Scratch-Pad Memories (SPMs) are low capacity on-chip memories mapped with 
global addresses and can be accessed directly by LOAD/STORE instructions. SPMs 
have special advantages in area and power consumption than caches due to their 
simpler control logics and better data access definition, and can ensure single cycle (or 
certain cycles) access delay [3, 4, 5, 6, 7]. These special features make SPMs more 
suitable to embedded real-time applications than traditional caches. In term of the 
features of SPMs, we propose a new on-chip shared close-coupled SPM structure, 
FCC-SDP, for our heterogeneous multi-core DSP project. FCC-SDP provides a fast 
transmission path for fine-grain shared data among DSP cores, and would benefit 
MPSoCs by its low access delay and high transmission efficiency. 
                                                           
* Funded by the project of National Science Foundation of China (No. 60473079). 
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2   Related Works 

Data optimization by on-chip scratch-pad memories has been a research topic since the 
last decade. Banakar et al. [8] computed the area and energy consumption for different 
size of SPMs and caches. Their results showed scratch-pad memory with an average 
energy reduction of 40%, and average area-time reduction of 46% against caches. 
Issenin et al. [9] presented a novel multiprocessor data reuse analysis technique to 
arrange the most common used data in low capacity on-chip SPMs, and replace the 
global accesses with the local ones for the reduction of power. Mathew and Davis [10] 
proposed a low energy and high performance SPM system for VLIW processors. Their 
system made use of array variable rotation technique replacing register renaming. 
Kandemir and Suhendra et al. [1, 7] proposed a multi-processor model including a 
Virtual Shared Scratch-Pad Memory (VS-SPM).  

Most of these works have exploited the storage allocation and data management 
problems of SPMs. The corresponding research work in multi-core processors is rarely 
found. However, different SPMs organizations would have distinct effect on the 
performance of MPSoCs. It is necessary to exploit SPM structures based on the 
applications requirement and communication features of multi-core processors. 

3   Architecture Prototype of the Multi-core DSP 

QDSP is our heterogeneous multi-core DSP prototype containing five processor cores, 
which are four 32b floating-point DSP cores and one 32b RISC core, as shown in 
Fig. 1. The RISC core functions as the user interface and tasks manager, and the four 
DSP cores, which are VLIW architectures, are used for background data processing. 
Each DSP core has its private two levels of caches and external memory interface 
(EMCI). FCC-SDP is on the same hierarchy with L1 caches, and forms two parallel 
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Fig. 1. The heterogeneous multi-core DSP architecture: QDSP 
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data paths together with the caches. Some fine-grain shared data, such as global 
variables and coefficient matrixes, can be transferred by FCC-SDP, and other data and 
commands could be transferred by some on-chip inter-links. 

4   FCC-SDP Architecture 

FCC-SDP is organized by four lanes, and each lane connects with a DSP core, as shown 
in Fig. 2. Each lane is composed of two same sized memory banks SiA and SiB (i=1, 2, 
3, 4), a bank controller, and Read/Write queues. The four lanes are interconnected by 
the on-chip communication links. All the eight banks are addressed sequentially to 
form the whole memory space of FCC-SDP. A group of control registers, Con_Reg, 
connects to the four DSP cores through the common configure bus Conf_Bus, used for 
the synchronization/exclusion operation. 
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Fig. 2. The architecture of FCC-SDP 

4.1   The R/W Queues with Bypass Logics 

We configure a read buffer with depth of three entries and a write buffer with depth of 
one entry for each lane. These buffers can hold the blocked read or write requests due to 
bank conflicts and failed synch, and alleviate the effect of access latency on the pipeline 
of DSP cores. If a read request meets a failed synchronization, it and its successive two 
requests in cycle T +1 and T+2 will be held in the read buffer. If DSP cores can’t 
receive the requested data of cycle T until cycle T+3, they won’t issue new instructions 
and wait. Write buffers use an enable signal WrtEN to stall DSP pipelines under failed 
synchs. However, under successful synchs, our bypass logics will forward R/W 
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requests to proper banks of FCC-SDP directly. The bypass logic improves the access 
efficiency of FCC-SDP, as shown in Fig. 3. 

4.2   Dual-Mode Operations and Double-Bank Interleaving Access 

As a shared close-coupled on-chip memory, FCC-SDP provides a fast transmission 
path for fine-grain shared data between two DSP cores. To improve the parallelism of 
FCC-SDP, we provide the dual-mode operation: private mode and shared mode. 

• In private mode, each DSP core only can read or write the two bank SiA and SiB 
in its corresponding lane; 

• In shared mode, each DSP can read, but can’t write the banks in another three 
lanes. Any DSP must exchange its data with other DSPs through its own lane. 

Although this shared mode limits the spaces of DSP cores write requests, it removes 
the write conflicts, simplifies the control logic for maintaining the consistency, and 
reduces the energy consumption.  
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Fig. 3. The read/write buffers with bypass logics 

To improve the parallelism of FCC-SDP transmission, we provide a double-bank 
interleaving access mode. DSP-i writes the first slice of shared data into its bank SiA, 
then releases bank SiA and writes the second slice into its bank SiB; at the same time, 
the consumer DSP-j (j≠i) begin reading the first slice from bank SiA. When both the 
write and read operation are completed, the two DSP cores switch their target banks: 
DSP-i releases bank SiB and writes the third slice to SiA, and DSP-j reads the second 
slice from SiB, and so on. When the execution time of each DSP core is balanced, the 
data transmission among DSP cores can be pipelined. 

4.3   RC Model and Fast Synchronization Based on Marker Lights 

In the Release-Consistency (RC) model [2], a synchronization operations include 
acquiring and releasing. We use the reduced RC model to realize a fast synchronization 
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protocol for FCC-SDP. We configure three marker light registers for each memory 
bank as hard locks for synch operations. The marker light registers are mapped with 
global addresses and connect to the four DSP cores by the common configuration bus 
Conf_Bus. Each marker light has two states, light and dark, representing the bank data 
ready state and exhausted state respectively. The detailed synchronization procedure is 
as follows: 

- After a producer DSP stores its shared data into bank SiA (or SiB), it turns on 
the marker lights of bank SiA (or SiB) by a STORE instruction. Before the 
marker light gets light, the corresponding bank is forbidden reading; 

- After a consumer DSP reads off all shared data in bank SiA (or SiB), it turn off 
its corresponding marker lights also by a STORE instruction; 

- After all consumers turn off their corresponding marker lights, the bank is 
released; otherwise the bank is forbidden writing; 

- When a read (or write) request meets an unexpected marker light state, it will 
be appended to the tail of the read (or write) buffers automatically. 

Since the path of shared data transmission is separated from the path of synch 
operations, we have to insert some independent instructions or NOPs as delay slots 
between the last read request for shared data and the darkening operation on the marker 
light, to avoid potential RC model violation and wrong synchronization. Fig. 4 gives an 
example of shared data transmission. 
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Fig. 4. An example of shared data transmission between two DSP cores 

The automatic hardware synchronization is transparent to users. Besides the kind of 
synch mode, we provide another synch solution based on software query: inserting a 
routine before each lightening or darkening operation to poll the state of marker lights, 
and then decide the program branches. The poll routine is realized by read operations 
on the configuration bus, which can be paralleled with other write operations due to the 
separate read and write buses. 

5   Selection of Single Bank Capacity 

The single bank capacity C of FCC-SDP is a design parameter needing tradeoff, 
because it has different transmission process and synch overhead with different bank 
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capacity. To be convenient for analyzing, let’s suppose all data written by the producer 
core is read off by the consumer core; both the read and the write requests are issued 
continuously; the turnaround time of accessing different banks is omitted. Then, we 
establish an analysis model for the data transmission between two cores. Table 1 gives 
the parameters. 

Table 1. The parameters for the analysis model 

Parameter Unit Notation 
W Bytes the width of memory bank 

L Entries the depth of memory bank 
C Bytes memory bank capacity, C=W·L 
V Bytes the volume of shared data between two cores 
s Cycles the time consumption of one synch operation 

D_r/w Cycles the access delay of FCC-SDP read/write 
T Cycles the total time consumption for exchanging data V 

(i) If V≤C, there is only one synch operation before finishing the transmission: 
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(ii) If V>C, the shared data should be partitioned as multi-transmission by the 

single bank capacity C. We define Tinterleave is the time interval between two 

successive bank switch operations: 
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According to our design result, D_w=1, D_r=2, s =2 and W=4B, we get Tinterleave=4, 
and express T as: 
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If the volume V can be divided exactly by C , the condition of (4.1) is fulfilled, we 
can get the minimum value of (4.1) as follows: 

VLoptimal = , VWLC optimaloptimal 4== , 3
4

2min ++= V
VT  (5) 

In fact, it is impossible to decide whether V could be divided exactly by C or not, 
because C is one of the unknown target parameters. However, it should be noted that 
the difference between formula (4.1) and (4.2) is negligible. So it is adaptable to use 
formula (4.1) and (5) to get the best value of Loptimal, Coptimal, and then Tmin.. 

6   Design Results and Performance Analysis 

We make hardware design implementation for FCC-SDP based on the SMIC 0.13um 
CMOS technology, and use eight 256*32b single-port SRAM modules as the memory 
banks. FCC-SDP frequency reaches 350MHz, peak bandwidth is 43.75Gbps, read 
delay without blocking is 2 cycles, and synch delay is 2 cycles. 

6.1   Performance Comparison and Analysis 

We build the C simulator, QDSP-Sim for the heterogeneous multi-core DSP. 
QDSP-Sim is a cycle-accurate behavioral simulator, and can execute some programs 
that are partitioned and assigned manually. Based on the framework of QDSP-Sim, we 
construct three multi-core DSP models including different on-chip memory structures, 
FCC-SDP, shared L2 caches and private L2 caches, respectively. Their memory 
hierarchies and configurations are shown in Table 2. 

Table 2. The memory hierarchies and configuration of three simulators 

Hierarchy FCCSDP-Sim SharedL2-Sim PrivateL2-Sim 

SPM FCC-SDP Non Non 

L1 Cache Private 4KB L1D and 4KB L1P, one cycle of hit delay 

L2 Cache 

Private 64KB, 4-way 

set association, 5 

cycles of hit access 

delay 

Shared 256KB, cache 

consistency bases on 

directories,  4 parallel banks, 6 

cycles of hit delay, 5 cycles of 

synch delay 

Private 64KB, 4-way set 

association, 5 cycles of hit 

access delay, 20 cycles of  

DMA initialization time, 

the burst length is 4 words. 

Off-chip Private 256MB memories, 30 cycles of access delay 

We select four typical DSP benchmarks for our simulation experiments. Table 3 
presents the detailed information and mapping methods of the four programs. The 
original data is stored in the off-chip memories for above three simulations. The 
intermediate results (i.e. shared data) are transferred respectively as follows: 
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-  FCCSDP-Sim: by L/S instructions through FCC-SDP directly; 
-  SharedL2-Sim: by L/S instructions through the shared L2 cache; 
-  PrivateL2-Sim: by background DMA transmission through on-chip buses. 

Table 3. Four benchmarks and their mapping used in the comparasion experiments 

Benchmark Notation Shared Mapping 

FFT 
Fast Fourier Transform for 1024 

points 
128B 

non-interlace transform, 

pipelined process 

JPEG-E 
JPEG encoder, photo resolution 

1024*768, Y:U:V=4:2:0 
6KB 

Partition photo by 8*8 macro 

blocks, pipelined encoding with 

the unit of 64 blocks 

MP3-D 
MP3 decoder, code rate 128Kbps, 

40fps 
16.2KB 

Pipelined decoding with unit of 

40 frames 

H264-E 
H.264 encoder, imagine resolution 

352*288 (CIF, 4:2:0), 25fps 
37.125KB 

1/4 frame (99 macros, 16*16 

pixels per macro) per DSP core, 

pipelined encoding 

We compare the programs execution time of the three models. Fig. 5 shows the 
experiments results normalized with the time of shared L2 cache (SharedL2-Sim). 
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Fig. 5. Execution time comparison of three memory structures 

 

The comparison results show that: 

• For transmitting fine grain shared data between DSP cores, it has higher 
performance through FSS-SDP than through shared L2 cache and DMA 
transmission. The average speedup ratio of FCC-SDP in our results is 1.1 and 
1.14, which benefits from the low access delay, low synch overhead and the 
Double-Bank Interleaving Access mode. 
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• For mass shared data transmission, the performance of FCC-SDP is lower than 
that of shared L2 caches and DMA transmission. The reason is that FCC-SDP 
transmission divides the shared data into too many little blocks, which increases 
the proportion of synch operations time consumption. 

• As the overhead to maintain cache consistency increasing, the DMA background 
transmission exhibits better performance than shared L2 caches. 

6.2   Experiments on Scalability 

We have eliminated the access conflicts of FCC-SDP by replicated banks. In theory, 
the FCC-SDP structure eliminated access conflicts can scale well with the increase of 
DSP cores. However our experiments show different results. We define the shared 
access bandwidth B as the maximum bandwidth of FCC-SDP when all DSP cores 
access FCC-SDP simultaneously, as follows:  

NW
D

F
B ⋅⋅=  (6) 

F is the maximum operation frequency of FCC-SDP, D is the access delay (if using 
pipelined access modes, D should be replaced by average access delay D’, D’<D), W is 
the width of access bus (here, W=32b), and N is the number of DSP cores. We make 
design implements for N=1, 2, ... , 8 respectively, and get the result of B according 
formula (6). Fig. 6 presents the experiments result of B vs. N. 

As the increase of N, the overhead of interconnection links, control logics and crossbar 
between DSP and FCC-SDP will increase by order of O(N2). The frequency of FCC-SDP 
becomes slower and the access delay gets longer, which cause the degrading of B. For the 
number of DSP cores more than eight, it is recommended that using four cores as a 
super-node to scale the multi-core DSP, which could employ FCC-SDP as a fast 
intra-super-node data-path to ensure the maximum fine-grain shared data transmission 
bandwidth, and employ NoCs (networks-on-chip) or other interconnection links as 
inter-super-node data-paths that have lower requirements in terms of communication 
delay and transmission bandwidth. 
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Fig. 6. The shared access bandwidth B vs. the number of DSP cores N 
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7   Conclusion 

As yet, the “Memory Wall” problem in processors still is the bottleneck of system 
performance, and the problem is aggravated in multi-core processors. Scratch-pad 
memories can meet the need of embedded applications to some extend with its flexible 
configurations, fast access operations, convenient management and simple control 
logic. In development of embedded multi-core processors, it is necessary to exploit 
on-chip memory architectures, increase the effective bandwidth and improve the 
MPSoC performance. 
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Abstract. Efficient memory management is crucial when designing high
performance processors. Upon a miss, the conventional operation mode of
a cache hierarchy is to retrieve the missing block from lower levels and to
store it into all hierarchy levels. It is however difficult to assert that stor-
ing the block into intermediate levels will be really useful. In particular,
this is unnecessary if a cache block is accessed only once before getting
evicted - i.e. a single-usage block. This paper is typically concerned with
reducing the number of single-usage blocks. Our observations reveal that
single-usage blocks are significant at runtime and especially in the lowest
cache level. We show that using an address-based prediction mechanism
is sufficient to identify this phenomenon. Two schemes are examined to
remove pollution caused by single-usage blocks: a bypass scheme and a
cache replacement policy. Our results show that leveraging single-usage
pollution is beneficial to memory-intensive applications running on su-
perscalar and multi-core architectures.

1 Introduction

Processor performance is strongly dependent on the memory hierarchy manage-
ment. Access time to off-chip memory now represents several hundreds of cy-
cles. In order to hide such huge latencies, modern processors feature a complete
memory hierarchy composed of multiple cache levels with variable latencies. In
addition, hardware prefetch mechanisms [1] are also often used to minimize the
impact of main memory access time.

On a cache miss, the conventional memory hierarchy propagates the missing
block from the lowest level in the memory hierarchy to the highest level, each
cache level getting a copy of the block. When this strategy is used, the cache
hierarchy acts as a set of more and more efficient filters that retains different
memory accesses. This strategy is in general quite efficient, since in case of a
subsequent miss on the same block in a lower memory hierarchy level, the block
remains accessible.

However, this strategy does not take into account that blocks have very dis-
parate usages across applications. In particular, in some cases, a block stored in
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the cache after a miss may not be accessed again before it is evicted. We call such
a block, a single-usage block or a SU-block. Storing a SU-block in the cache may
cause severe performance degradation as it could evict another block that could
potentially be more useful. We refer to this phenomenon - storing SU-blocks in
a cache - as single-usage pollution or SU-pollution.

Our first contribution in this paper is the characterization and analysis of
the SU-pollution phenomenon. For a 2-level cache hierarchy, we show that most
applications only exhibit a limited amount of SU-pollution in the L1 data cache,
while some applications exhibit a high SU-pollution rate in lowest cache level.
Our analysis also reveals that the single-usage property of a block is closely
related to the memory instruction that triggers the L2 miss on this block.

Our second contribution is the proposal of a hardware mechanism for predict-
ing single-usage pollution. Two schemes are presented to exploit SU-pollution:
(1) a bypass scheme that prevents SU-blocks from entering the cache and (2)
a SU-based cache replacement policy. Experiments show that our proposal is
beneficial to both superscalar and multi-core architectures where the memory
subsystem is a bottleneck.

The remainder of this paper is organized as follows. Section 2 quantifies single-
usage pollution. In Section 3, we propose a single-usage prediction scheme and
two techniques to exploit single-usage blocks. Section 4 presents our experimental
results. Section 5 discusses the related work. Section 6 concludes this study.

2 Characterizing Single-Usage Pollution

We quantified the number of SU-blocks that are accessed at runtime for a subset
of the SPEC2000 applications. Our data has been collected on a 4-way super-
scalar architecture featuring a 2-level cache hierarchy (32KB 4-way L1 data cache
and 512KB 4-way L2 cache). A complete description of our baseline configuration
is available in Section 4.1.

2.1 Quantifying SU-Pollution Within L1 and L2 Caches

We measured the number of dynamic accesses to SU-blocks within both the L1
and L2 caches. For a given cache level, a cache block is defined as single-usage if
it is accessed only once before getting evicted from this level. Figure 1 reports the
fraction of memory accesses that are single-usage at execution. We notice that
SU-pollution is quite negligible in the highest cache level as only 6%, on average,
of the dynamically accessed blocks are single-usage. The high usage behavior of
cache blocks, mainly stems from the fact that data contained in L1 data cache
exhibits high spatial and temporal localities. In our context, this means that
attempting to reduce SU-pollution in the L1 cache would only have a small im-
pact on overall performance. In contrast, the SU-pollution amount is much more
significant in the lowest cache level. On average, 33% of memory accesses in the
L2 cache are single-usage. We can even observe for some applications (wupwise,
swim, mgrid, applu, art, ammp), mostly based on memory-intensive scientific
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Fig. 1. Single-usage pollution within L1 and L2 caches
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Fig. 2. Applications sensitivity to varying L2 cache size in terms of IPC and MPKI

kernels, that SU-blocks are quite prominent at runtime. Other applications such
as gzip, gcc, crafty, bzip2 depict a small SU-pollution level and are unlikely to
benefit from our scheme.

2.2 Categorizing SPEC2000 Applications

Albeit some applications exhibit a high SU-pollution rate, minimizing this quan-
tity would not necessarily translate into speed improvement, especially if the
program performance is not dependent on the memory hierarchy behavior. We
studied the applications sensitivity by varying the L2 cache size (from 128KB
up to 2MB), using IPC and MPKI (miss per kilo-instruction) as metrics. Due
to space constrains, we only report results for a few programs.

Figure 2 classifies the SPEC2000 applications into three distinct categories.
The first category encompasses benchmarks in which performance and miss rate
are very sensitive to increasing the L2 cache size. In our context, these applica-
tions are very likely to benefit from a scheme that reduces SU-pollution. For art,
increasing L2 cache size from 512KB to 1MB has a significant impact on IPC
and MPKI. In addition, since art exhibits a considerable SU-pollution amount,
minimizing this quantity would also allow a substantial increase in the available
cache space; and hence, in a potential performance improvement. The second
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category comprises memory-intensive workloads that do not benefit from resiz-
ing the L2 cache from a performance viewpoint. Nonetheless, we observe that
doubling the L2 cache size does still lead to a noticeable reduction in terms of
miss rate. This would therefore allow to reduce the main memory bandwidth us-
age, which could be used to trigger prefetch requests instead. The last category
gathers applications in which performance and miss-rate are not dependent on
cache size. For these applications, attempting to reduce SU-pollution will have
only a marginal impact on performance, or worse, in case of a SU misprediction,
this could even result a performance loss.

3 Predicting and Exploiting Single-Usage Blocks

Minimizing the pollution due to SU-blocks can help improve the whole memory
hierarchy behavior as well as the processor performance. In this section, we first
show that the single-usage property of a dynamic L2 cache block is closely related
to the instruction that triggers the L2 cache miss. This observation makes a PC
based block-usage prediction mechanism viable. We also describe how a stride
prefetcher could be adapted at a minimum extra hardware cost for predicting
cache blocks usage. To decrease SU-pollution, we propose two distinct schemes:
(1) a bypass solution and (2) a SU-based cache replacement policy.

3.1 Single-Usage Property is Associated with the Instruction

In order to speculate over the cache block usage property, one can consider the
cache block address itself and quantify its usage over time. Johnson et al. used
this approach in [2]. However, we show below that a cache block usage property
is tied to the program instruction that triggers the memory access.

Quantifying Single-Usage I-Sequences. We refer to the sequence of L2
cache accesses initiated by a single program instruction as an I-sequence. Let
us also define a single-usage I-sequence as a I-sequence for which the amount of
SU-blocks exceeds 95%. Note that the SU I-sequences property depends on the
memory hierarchy configuration. On average, we found that over 90% of SU-
blocks are referenced by SU I-sequences across SPEC2000 benchmarks. Hence,
a mechanism capable of detecing SU I-sequences at runtime could help decrease
SU-pollution.

3.2 Hardware Support to Predict Block Usage

The block-usage (BU) predictor (see Figure 3), mainly consists of a block-usage
prediction table and on two extra tags associated with each L2 cache line. Each
entry in the block-usage prediction table consists of two fields: 1) the instruction
address (IA) and 2) a saturated single-usage detection (SUD) counter. Two tags
attached to a L2 cache line are the SU tag, a single bit that records whether or
not the block has been re-accessed after being stored into the L2 cache, and the
instruction address tag (or IA tag) that records the address of the instruction
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Fig. 3. Block-usage predictor (BUP)

generating the miss. The predictor operates in two main phases : 1) query and
2) update.

Query. On a miss on the L2 cache, a query is sent to the BU predictor. The
address of the instruction that incurred the miss is used as an index. If an entry
matches, the predictor delivers a SU or non-SU verdict depending on SUD value.
A SU verdict is only delivered upon a saturated SUD counter state, else a non-SU
verdict is returned.

Update. The BU table is updated whenever a block is evicted from L2 cache.
The IA tag of the evicted block is used to get the corresponding I-sequence in
the BU table. The SUD counter associated with the BU table entry is updated
according to the SU tag of the block. If the tag indicates that the block is single
usage, the counter is incremented, otherwise the counter is reset to zero.

The BU predictor can suffer from two misprediction types : 1) the block is
predicted as non-SU, but is single usage and 2) the block is predicted as single
usage but might have been accessed several times if it was stored into L2 cache -
this is referred to as a SU misprediction. Due to the potential performance loss
induced by a SU misprediction, our BU predictor favors accuracy over coverage.
This is done through delivering SU verdicts only upon a saturated SUD counter
state and by resetting counters on non-SU updates.

Adapting a Stride Prefetcher for Block-Usage Prediction. One can eas-
ily extend a stride prefetcher [1] for block-usage prediction as this mechanism
also uses the instruction address to initiate prefetch requests. This would en-
able to mitigate the hardware overhead due to the BU predictor. To do so, each
entry in the stride prefetcher table has to be augmented with a SUD counter.
The main overhead induced by the BU predictor is the additional tags on the
L2 cache. In our experiments, each L2 cache line is augmented with a 1-bit SU
tag and a 13-bit partial IA tag (9-bit are actually used to index the 512-entry
stride prefetcher table, the purpose of the remaining 4-bit is to reduce aliasing).
For the 128-byte cache blocks considered in the paper, these extra tags account
for 2% of the cache storage budget.
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3.3 Reducing SU-Pollution

We propose two distinct techniques to exploit SU-pollution reduction in the L2
cache: (1) a bypass scheme and (2) a SU-based cache replacement policy.

Bypass Scheme. In order to prevent SU-pollution, we suggest to directly for-
ward missing SU-blocks - identified by means of the BU predictor - from memory
to the L1 data cache; thus bypassing the L2 cache to enable more useful data to
remain cached. Note that non-SU blocks are still processed in a standard way.
Performing bypassing could however have a detrimental effect on the predictor
accuracy. Once an I-sequence is marked as single-usage, its corresponding SUD
counter could remain saturated forever. To overcome this issue, we propose to
re-inject a SU-block into the L2 cache once in a while. This allows to update the
SUD counter. If the I-sequence behavior changes, the SUD counter will be reset.
The decision of re-injecting a SU-block is taken using a low probability.

SU-Based Replacement Policy. Another way to reduce SU-pollution is to
use the BU predictor for a cache replacement purpose. Let us suppose a set-
associative cache featuring a LRU replacement policy. Our proposal is to aug-
ment the LRU algorithm with block usage information. Upon selecting a block
for eviction, our technique favors the replacement of least-recently-used blocks
marked as single-usage instead of solely using the recency information. If there
are no SU-block in the current set, the LRU block is selected. The architectural
support needed for this scheme consists of extending each L2 cache block with a
single bit that reflects whether or not this block is single-usage. This prediction
bit is updated each time a cache block is loaded from memory. As for the bypass
scheme, however, SUD counters could remain saturated. To avoid this scenario,
we take an arbitrary decision using a low probability to decide if we should select
the LRU-block as a victim instead of the SU-block.

4 Evaluation

This sections evaluates the performance of the BU predictor in terms of accuracy
and coverage. It also examines the impact on performance, miss-rate and memory
traffic induced by the SU-based cache replacement policy and the bypass scheme.

4.1 Experimental Setup

Our experiments were performed on SESC, an execution-driven simulator devel-
oped by [3]. Our baseline processor is a 4-way out-of-order superscalar architec-
ture. Table 1 summarizes the configuration we used as a reference. Our memory
subsystem models a 512-entry stride prefetcher [1] that is coupled with a 32-entry
prefetch buffer [4, 5] to filter pollution related to aggressive prefetching.

Benchmarks. We evaluate our proposal on a subset of SPEC2000 benchmarks
that run on SESC: wupwise, swim, mgrid, applu, mesa, art, equake, ammp, apsi,
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Table 1. Simulated machine parameters

Parameter Configuration
Decode / Issue / width 4

Retire width 5

ROB size 36 Issue + 32 entries

LSQ size 20 Issue + 32 entries

Branch predictor O-GEHL [6], 64-Kbit, 6-cycle mispred. penalty

L1 inst. 64kB, direct-map, 128B/block, LRU, 1-cycle

L1 data 32kB, 4-way, 128B/block, LRU, 1-cycle

L2 unified 512kB, 4-way, 128B/block, LRU, 11-cycle

Main Memory latency 500-cycle

Table 2. BU predictor coverage and accuracy (512-entry table + 3-bit SUD counters)

coverage accuracy SU-
rate

#cache
accesses
(*M)

coverage accuracy SU-
rate

#cache
accesses
(*M)

mgrid 96.4% 99.53% 71.64% 4.96 swim 87.74% 99.64% 69.52% 31.3

art 83.72% 99.8% 70.18% 69.91 mesa 88.23% 99.98% 12.35% 1.54

ammp 99.63% 99.98% 96.23% 86.76 vpr 1.39% 80.2% 11.77% 19.45

mcf 71.71% 98.16% 46.31% 88.41 equake 59.16% 99.77% 21.58% 4.57

applu 98.01% 99.84% 68.84% 6.34 twolf 0.81% 74.08% 17.79% 25.43

parser 4.81% 81.65% 19.87% 9.45 apsi 67.19% 98.06% 3.6% 2.58

gcc 49.04% 97.92% 3.42% 13.47 crafty 0.02% 91.67% 0.54% 11.78

gzip 67.05% 97.2% 0.87% 7.85 wupwise 97.65% 99.74% 51.19% 2.22

bzip2 41.61% 89.26% 1.05% 9.75

gzip, vpr, gcc, mcf, crafty, parser, bzip2, twolf. All applications were compiled
for the MIPS ISA with the -O3 optimization flag enabled. We used the reference
data as an input. The first billion instructions were skipped and the next billion
instructions were simulated.

4.2 Block-Usage Predictor Accuracy and Coverage

We define the BU predictor coverage as the fraction of the number of SU-blocks
that are correctly predicted. The BU predictor accuracy as the fraction of SU
verdicts that are correct. Table 2 reports the coverage and accuracy of a 512-
entry BU predictor table featuring 3-bit SUD counters. Overall, the BU predictor
provides high accuracy on most benchmarks. The rationale is that we deliver SU
verdicts exclusively on a counter saturated state while resetting the count value
on non-SU verdicts. Although this slightly impairs the predictor coverage, we
observe that we still identify a large fraction of SU-blocks for memory-intensive
applications. For other applications such as crafty, vpr, twolf, our predictor is
quite inefficient. This is due to the fact that these applications only exhibit a
small SU-pollution rate as mentioned in Section 2.1.
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Fig. 4. IPC normalized to baseline for our different schemes

Varying BU Predictor Parameters. We varied the main BU predictor pa-
rameters (number of predictor entries and SUD counter width) to study their
influence on coverage and accuracy. Increasing the number of entries from 128 to
1024 has a positive, but small impact on coverage. Increasing the SUD counter
width decreases the coverage of the BU predictor but increases the SU-verdict
accuracy. Our results indicate that a suitable trade-off between the predictor
efficiency and its hardware complexity is to use a 512-entry predictor table com-
prised of 3-bit saturating counters.

4.3 Impact on Performance, Miss-Rate and Memory Traffic

Figure 4, Figure 5 and Figure 6 compare our cache management policies using
three metrics, namely the IPC, the L2 cache miss rate (in MPKI) and the bus
traffic (number of accesses) between L2 cache and main memory. These results
are normalized to our baseline architecture described in Table 1. The first bar
corresponds to our SU-based replacement policy described in Section 3.3. The
second bar represents the bypass scheme (see Section 3.3). The following bar is
the baseline architecture enhanced with a stride prefetcher. The last bar corre-
sponds to the stride prefetching scheme adapted for block-usage prediction.

Figure 4 points out that our proposal performs well with workloads from the
first category (see Section 2.2) whereas applications from other categories show
little or no performance gains. mgrid performs well on both schemes by achieving
a speed-up close to 30% along with a noticeable decrease in the L2 cache miss-
rate. This is consistent with our analysis as we observed that mgrid performance
is very sensitive to adapting the L2 cache size - especially from 512KB to 1MB.

When a performance gain is observed, the bypass scheme usually performs
better than the SU-based cache replacement policy. This is somewhat coherent
as bypassing SU-blocks allows existing multi-usage data to remain cached in
L2. In contrast, with the SU-based replacement policy, a few SU-blocks can still
reside in L2 cache; hence the lower performance gain.

For most applications, using a stride prefetcher for block-usage prediction is
beneficial to performance and miss rate. Due to a reduced memory traffic - see
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Fig. 5. Normalized L2 cache miss-rate

Fig. 6. Normalized memory traffic between L2 and main memory

Figure 6 - the number of prefetching opportunities is accordingly increased;
hence an extra performance gain as compared to a basic bypass scheme. On
some applications such as gzip, no performance gain is observed as this program
has a small miss rate. Note that the performance improvement obtained with
the prefetcher-based BU predictor is not as significant as that of a basic BU
predictor scheme - e.g. see mgrid. This stems from the fact that the usage of
prefetching overrides part of the benefits achieved by our scheme.

Our proposal slightly degrades performance of ammp when used with a stride
prefetcher - from a 0.0732 IPC to 0.0718. This is due to the management of the
memory bus. Prefetches are initiated only when the bus is free. Bypassing the
L2 cache on write-backs of SU-block tends to create a burst of traffic that could
prevent prefetches. When data are first stored in the L2 cache, the write-back
traffic is smoothened, creating new opportunities for triggering prefetch requests.

4.4 Exploiting SU-Pollution Reduction in Multi-core Systems

Managing the memory hierarchy is a crucial issue in multi-core architectures
where processing cores often share the lowest cache level. We examined the po-
tential gains that could be achieved by our bypass scheme in this context. To do
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Table 3. Weighted IPC, L2 cache miss-rate and SU-pollution for a dual-core system

2-core - 1MB L2 2-core - 2MB L2 2-core - 1MB L2 + bypass
WIPC Miss Rate SU rate WIPC Miss Rate SU rate WIPC Miss Rate SU rate

wupwise 1.00 0.50 98.52 1.00 0.50 97.20 1.00 0.50 4.14
mgrid 0.87 3.48 44.99 1.00 2.96 35.12 1.00 2.98 3.51

applu 1.00 4.47 90.90 1.00 4.47 90.83 1.00 4.47 3.05
mcf 0.98 51.39 68.42 1.08 45.95 57.51 1.21 43.17 18.78

mgrid 0.71 4.54 72.59 1.00 2.97 35.38 0.94 3.53 4.59
ammp 0.57 9.34 4.37 1.00 0.19 0.07 0.93 1.14 0.17

art 0.94 35.23 44.62 2.73 0.26 0.11 1.09 23.81 12.35
gzip 0.79 1.68 11.08 0.99 0.21 1.65 0.81 1.55 3.93

so, we modeled with SESC a dual-core system that features private 32KB 4-way
L1 data caches and a shared 4-way 1MB L2 cache. A 1k-entry BU predictor
table is considered. We mixed together applications from distinct categories (see
Section 2.2) to study the performance impact on our scheme. As a performance
guide, we use the weighted speed-up metric [7, 8]. For each benchmark, we simu-
lated 250M instructions. If a benchmark completes 250M instructions before the
other, we keep on executing the finished benchmark till the second benchmark
finishes its processing.

Results. Table 3 reports the weighted IPC, the L2 cache miss-rate and the
associated SU-pollution rate for different memory configurations of the baseline
dual-core system. For each programs mix, we report the contribution of individ-
ual programs for the considered metrics. For instance, running wupwise-mgrid
on the baseline CMP shows that wupwise does not suffer from cache sharing
(WIPC = 1) while mgrid (WIPC < 1) does. Table 3 shows that executing our
mixed applications with a larger L2 cache often improves the considered met-
rics. Overall, our bypass scheme applied to a multi-core architecture provides
noticeable performance gains. It does even outperform a CMP system featuring
a twice as large L2 cache when executing applu-mcf. While applu by itself does
not benefit from reducing SU-pollution, it does however makes room for mcf,
thus allowing substantial performance gain on this latter application. The same
phenomenon occurs with mgrid/ammp. Reducing mgrid SU-pollution essentially
reduces ammp miss rate.

5 Related Work

Tyson et al. [9] observed that, on many applications only a few load instructions
are responsible for the majority of data cache misses. They proposed a scheme
to decide whether or not a load instruction should allocate data in the L1 cache.
The authors suggest using PC-indexed counters that are incremented on a miss
and decremented on a hit. In practice, a load instruction is classified as a ”to
be bypassed” if in general it is the first to touch a memory block and if further
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instances of the same load do not touch back the same block in the near future.
This scheme is able to capture instructions exhibiting no spatial locality on the
L1 cache, such as loads exhibiting a stride longer than a cache block. However it is
not able to capture future reuse of the cache block by other loads or writes. This
may sometimes lead to dramatically poor behavior, particularly on optimized
code. For example, on a streaming application, unrolling a loop with an unrolling
factor larger then the cache line size may push the hardware to classify the first
access to each data in a cache block as a ”bypass access”.

Dybdahl et al. studied block bypassing in the last cache level in [10]. They
extended the dynamic scheme for the L1 cache proposed by Tyson [9] to the
lowest cache level. They noticed that this extension sometimes leads to a severe
performance loss. They proposed a new hardware scheme to address this issue.
The result is mitigated: performance losses are reduced on some applications,
performance benefits are also reduced on other applications. The hardware cost
of their scheme is relatively high, since each block in the last-level cache is aug-
mented with voluminous information (shadow address tag, instruction address,
status). Moreover the management algorithm is quite complex.

Chi et al. [11] proposed a software scheme to address single-usage cache pol-
lution. The compiler determines for each memory reference its cachability. Since
an architecture with a single cache level is considered, on a reference marked as
not cachable, the data is not stored in the L1 cache. The main limitation of this
software solution is that it does not take into account the spatial locality within
a cache block.

Rivers and Davidson [12] proposed a hardware mechanism to capture the tem-
porality of a data block. Data blocks are classified as temporal or non temporal
(NT). A block is classified as NT if none of its words is re-referenced before its
eviction. A NT bit is added to each block in the first and second levels of the
cache. The main memory does not have the NT bit, therefore once a block is
evicted from the L2 cache, the information is lost. In contrast to this proposal,
we associate the single-usage property to memory access instructions rather than
to cache blocks, and we address the L2 cache.

Wong and Baer [13] described a cache replacement policy enhanced with tem-
poral locality information to guide block replacement. Instead of systematically
evicting LRU blocks, their scheme favors replacing non-temporal blocks instead.
The temporal information is obtained through profiling or by means of a hard-
ware predictor.

6 Conclusion

This paper proposes to exploit reduction in single-usage cache pollution for a
better memory hierarchy management. We observed that the single-usage prop-
erty of a cache block is very tied to the load/store instruction that causes a cache
miss (on this block). Hence, we suggest using a PC-based hardware predictor to
uncover SU-blocks at runtime. Our experiments show that our predictor pro-
vides high coverage and accuracy on most programs. We evaluate two schemes
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to reduce SU-pollution: (1) a bypass technique and (2) a SU-based cache replace-
ment policy. Our results point out that using either technique is beneficial to a
superscalar architecture. Extra gain is further observed when adapting a stride
prefetcher for block-usage prediction - while mitigating the storage overhead
due to our predictor. Our proposal is also evaluated in a multi-core environment
using multi-programmed workloads. Exploring the benefits on multi-threaded
programs is part of our future work.

References

[1] Fu, J.W.C., Patel, J.H., Janssens, B.L.: Stride directed prefetching in scalar pro-
cessors. In: Proceedings of the 25th annual international symposium on Microar-
chitecture (1992)

[2] Johnson, T.L., Connors, D.A., Merten, M.C., mei W. Hwu, W.: Run-time cache
bypassing. IEEE Trans. Comput. 48(12) (1999)

[3] Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi,
S., Sack, P., Strauss, K., Montesinos, P.: SESC simulator (2005), http://sesc.
sourceforge.net

[4] Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: Proceedings of the 17th
annual international symposium on Computer Architecture (1990)

[5] Chen, W.Y., Mahlke, S.A., Chang, P.P., mei W. Hwu, W.: Data access microar-
chitectures for superscalar processors with compiler-assisted data prefetching. In:
Proceedings of the 24th annual international symposium on Microarchitecture
(1991)

[6] Seznec, A.: Analysis of the o-geometric history length branch predictor. In: Pro-
ceedings of the 32nd Annual International Symposium on Computer Architecture
(2005)

[7] Snavely, A., Tullsen, D.M., Voelker, G.: Symbiotic jobscheduling with priorities for
a simultaneous multithreading processor. In: Proceedings of the 2002 international
conference on Measurement and modeling of computer systems (2002)

[8] Hsu, L.R., Reinhardt, S.K., Iyer, R., Makineni, S.: Communist, utilitarian, and
capitalist cache policies on cmps: caches as a shared resource. In: Proceedings
of the 15th international conference on Parallel architectures and compilation
techniques (2006)

[9] Tyson, G., Farrens, M., Matthews, J., Pleszkun, A.R.: A modified approach to
data cache management. In: Proceedings of the 28th annual international sympo-
sium on Microarchitecture (1995)

[10] Dybdahl, H., Stenström, P.: Enhancing last-level cache performance by block
bypassing and early miss determination. In: Asia-Pacific Computer Systems Ar-
chitecture Conference (2006)

[11] Chi, C. H., Dietz, H.: Improving cache performance by selective cache bypass. In:
22nd Hawaii International Conference on System Sciences (1989)

[12] Rivers, J., Davidson, E.: Reducing conflicts in direct-mapped caches with a
temporality-based design. icpp 01 (1996)

[13] Wong, W.A., Baer, J.L.: Modified lru policies for improving second-level cache
behavior. In: HPCA (2000)

http://sesc.sourceforge.net
http://sesc.sourceforge.net


L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 102–113, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Alternative Organization of Defect Map for 
Defect-Resilient Embedded On-Chip Memories 

Kang Yi1,  Shih-Yang Cheng2, Young-Hwan Park2,  
Fadi Kurdahi2, and Ahmed Eltawil2 

1 School of Computer Sceince and Electronic Engineering,  
Handong Global University, Pohang, Korea  

yk@handong.edu 
2 Department of EECS, University of California, Irvine, CA 92697-265 
{shihyanc,younghwp,kurdahi,aeltawil}@uci.edu 

Abstract. In this paper, we propose the low power and low area defect map 
organization for the defect-resilient embedded memory system for multimedia 
SOCs. Existing approach to build defect map of embedded memories is based 
on the CAM (Content Addressable Memory) organization. But, it consumes too 
much power and relatively large chip area. It may be serious problem in the 
near future for very deep submicron technologies. Therefore, we propose the 
SRAM-based defect map organization to reduce both the power consumption 
and chip area. We also develop new defect map access algorithm to minimize 
the number of defect map access operations to save power. Our estimation 
results show the new scheme  based on SRAM defect map organization 
consumes only 1/4 times of power at BER=1.0% compared with the power 
overhead by the existing approach.  

Keywords: Embedded memory Yield, Defect Map, Memory Error Resilient 
Design, Video error concealment. 

1   Introduction 

The memory hungry application is becoming the dominant portion of the SOC market 
because of highly increasing demands on multimedia applications. According to the 
2001 International Technology Roadmap for Semiconductor, the embedded memories 
are going to occupy from 54% to 94% of silicon real estate by year 2014 [1,2] as 
shown in Figure 1. In addition, the ever-shrinking geometry of semiconductor devices 
is pushing the memory parts into a single chip integrated with core logic parts because 
of many practical benefits such as manufacturing cost reduction, performance 
enhancements, and much more power saving.  

However, it is well known problem that the large embedded on-chip memory with 
very deep submicron technology will be suffering from high defect density resulting 
in low SOC chip yield and high production cost. 

Even though there are several existing approaches for this memory recovering 
from defects problem, these approaches with redundancies require too much area 
overhead for the memory defect density in the near future. In [3] we can see the 
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prediction of the defect densities that are 1-2 orders or magnitude higher than today’s 
defect density. In [4] the existing approach with redundancy scheme to address 0.1% 
defect density shows a huge cost of 70% area overhead. 
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Fig. 1. Area of memory portion in SoC design trend 

An innovative approach to this embedded memory data recovering problem with 
highly defect density for the near future technology was proposed by [5] and [6] 
focusing on the multimedia application. The new approach observes that multimedia 
applications have the information redundancy in themselves like spatial and/or 
temporal locality. The new approach is based on the defect map which records all the 
defect memory cell location and post processing to recover corrupted data from 
defective data location. But, the overhead of the new approach is defect map power 
consumption. 

Therefore, in this paper we propose an alternative defect map organization that has 
the same functionality as previously proposed system while it saves much of the 
power consumption. The key idea is using of SRAM instead of CAM (Content 
Addressable Memory) and reduction defect map read operation frequency drastically 
with new memory lookup strategy.  

2   Summary of the Previous Work 

2.1   Overview of Filtering Scheme with Defect Map 

By utilizing the redundant information in multimedia application data themselves, [6] 
developed an image data recovery method from corrupted memory targeting at H.264 
decoder system. According to the previous work from [6] they achieved high visual 
quality as well as high PSNR values even with simple image filters if the defect pixel 
location is known by defect map. The works in [6] recovers corrupted moving 
pictures with memory defects up to 1.0% bit defect density which is quite higher 
density than necessary even in the foreseeable future technology. Figure 2 shows the 
system block diagram of the approach. 
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The defect map in this system is constructed by built-in-self-testing process at the 
time of system power up booting phase. Once the defect map is constructed, the 
defect map lookup is requested for every read operation for the pixel data stored in a 
frame buffers to see if the location is defect or not. Whenever an H.264 decoder tries 
to read the defect location, image filter is applied to get the properly estimated data 
for the pixel. In this filtering process, neighboring pixel data in the frame buffer (DPB 
memory) may be required, too. Figure 3 shows the visual quality of corrupted and 
recovered image by the filtering with defect map approach. The recovery result is 
almost very good. 
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Fig. 2. The overall architecture for defect-resilient multimedia data memory with H.264 decoder 
system 

  
(a) corrupted image by defects (b)recovered image with filter 

Fig. 3. Comparison of Images before and after recovery  by [6] at BER=1.0% 

2.2   The Problem with Filtering Scheme with CAM-Based Defectmap 

Figure 4 shows the CAM defect map organization. It emphasize that defect map 
reference is required for every pixel value reading. The problem with the defect map 
is that at higher defect rates the defect map power consumption increases and the 
defect map area overhead is no more negligible. Figure 5 shows this problem with 
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power overhead of filtering scheme for different defect densities in memory bits. The 
problem stems from the fact defect map size is proportional to the pixel error rates. 
The relationship between pixel error rates (PER) and bit error rates (BER) are shown 
equation (1).  

DEPTHPIXELBERPER _)1(1 −−=  (1) 

The PIXEL_DEPTH in equation (1) is the number of bits for each pixel which is 
usually 8. The power consumption of the defect map is proportional to the size of 
defect map because of CAM nature. 
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Fig. 4. CAM-based defect map organization 
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Fig. 5. Power overhead by filtering scheme with CAM-based defect map organization 

This experimental power consumption data is based on the numbers in [7] and 
assumes the implementation with 90 nm technology and VGA sized image with 5 
reference frames. In the Figure 6 we analyzed the source of power consumption. We 
observe that defect map power consumption accounts for more than 80% of the total 
filtering scheme power consumption at higher defect densities. Note that the 
BER=0.01% is high enough to meet the current technology requirements but, it is 
expected the BER may be higher than 0.1% under the coming very deep submicron 
technology. Therefore, in order to reduce the power overhead of filtering scheme for 
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the foreseeable future technology we have to find a way to reduce the defect map 
power consumption. In this paper, we propose the use of SRAM for the defect map 
construction rather than CAM-based defect map organization. 
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Fig. 6. Power consumption share by filtering scheme with CAM- based defect map organization 

3   Alternative Defect Maps 

3.1   The Idea of SRAM-Based Defect Map Organization 

We compare the old defect map with our new SRAM-based one in Figure 7. In this 
new defect map scheme, we use SRAM instead of CAM to save power. We store the 
addresses of defective pixels in the SRAM. And, we look up the defect map for every 
pixel data reading operation to find if there is any entry in the defect map that has the 
same given address. But, the problem with the SRAM-based approach is that we need 
to search all the SRAM memory to find a specific SRAM address having specific 
frame buffer address. What makes it worse is that SRAM only performs the search 
operation one by one manner while CAM performs a parallel search with contents. To 
avoid the exhaustive search in the defect map we assume the following two things. 

(1) The addresses of defect pixels stored in the SRAM are all sorted in an ascending 
order.   

(2) The frame buffer read operation for pixel value acquisition is performed by an 
address issued in an ascending order. 

The above two assumptions can be realized by (1) well organizing the memory 
address ordering and (2) by address sorting at the time of defect map construction 
which occurs only one time per system power up. In this scheme we also use special 
registers called “defectmap_pointer” register and “defect_pixel_addr” register. The 
defectmap_pointer register points to the defect map location that contains the address 
of the frame buffer where the next defective pixel is located. Defect_pixel_addr 
represent the defect map content currently pointed by defectmap_pointer. Under the 
two assumptions above, we develop an SRAM-based defect map look up algorithm as 
shown in Figure 8.  
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Fig. 7. Basic SRAM-based defect map organization 

 

Fig. 8. SRAM-based Defect map lookup algorithm 

function DefMap_LookUp (frame_buffer_address : address) 

if(*defectmap_pointer == UNINITIALIZED) then 

       defectmap_pointer = 0; 

defect_pixel_addr = *defectmap_pointer; 

end 

if (frame_buffer_address < defect_pixel_addr) then 

       return DEFECT_NOT_FOUND; 

else if (frame_buffer_address == defect_pixel_addr) then 

       defectmap_pointer = defectmap_pointer + 1 ; 

       if (defectmap_pointer > MAX_ADDR) then 

           defectmap_pointer = 0; 

       end 

       defect_pixel_addr = *defectmap_pointer ; 

       return DEFECT_FOUND; 

end ; 

else begin 

    return DEFECT_NOT_FOUND 

end  
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The first line of the algorithm describes the defectmap pointer register and 
defect_pixel_addr initialization procedure. The following “if statement” determines 
whether the given frame buffer address is the defect location or not by comparing the 
given address with the defectmap output register. If both matches it means given 
address is defect location and increase the defect pointer and read out the content 
from the defect map which is the next defect pixel address in the frame buffer.  

With this algorithm, we achieve the sequential read of defect map per frame. That 
means the core H.264 decoder reads defect map only as many time as the number of 
defective pixels in the frame buffer. Therefore, we can save the defectmap power 
consumption drastically with SRAM-based defect map organization due to (1) the less 
power consumption by SRAM circuit than CAM circuit per access and (2) the less 
number of defect map access by the new  defect map access algorithm. 

3.2   A Consideration for Image Filters: Enhanced SRAM-Based Organization 

We still have the problem with the SRAM-based defect map organization proposed in 
previous subsection when we care about the image filters. Some filters developed in 
[6] require the surrounding pixel values neighboring the defect pixel. And, some of 
them also need to find whether each of neighboring pixels is in defect location or not. 
In order to provide this neighboring pixel defectiveness information we added more 
bits to each of the entries in the SRAM-based defect map. We show the modified 
organization in Figure 9. 

The enhanced organization allocates more space of B bits slot per pixel value for 
the neighborhood pixel information of defectiveness. Each of bit in the extra space 
The B is from 0 to 8 where 0 means the image filter does not care about the 
defectiveness of neighboring pixels and 8 means the image filter needs every  
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Fig. 9. Enhanced SRAM -based defect map organization 
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Fig. 10. Representation of defectiveness information of neighbor pixels around the defect pixel  

neighboring pixel defectiveness information. Figure 10 demonstrates the meaning of 
each bit in the extra bits where B=8. If the left-most bit (1st bit), the 2nd, and the 4th 
bits in the extra field are ‘1’s, the pixel p0, p1 and, p3 are defect pixels. 

3.3   Simpler Defectmap Organization: Flag Bit Approach 

Sometimes, simple strategy is the best strategy under a special condition. We propose 
another alternative defect map organization named “Flag” approach which can be 
effective when defect density is too high for separate defect map memory. Figure 11 
shows the “Flag-based” defect map organization. 

This approach adds one flag-bit for each pixel value component. Each of the flag-
bit whose value is ‘1’ means the corresponding entry of the frame buffer has one or 
more defect bits per entry of each frame buffer location. Its area overhead is 1/8 
=12.5% regardless of defect density. But, it has the benefits over SRAM-based 
method : (1) very simple organization, (2) low power consumption comparable to 
enhanced SRAM-based approach, (3) low area overhead at very high defect density 
(BER >= 0.5%).  
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Fig. 11. Flag-based defect map organization 
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4   Quantitative Evaluation 

4.1   Memory Area Overhead Comparison 

The following equation (2) through (4) is for the defectmap area overhead for CAM-
based defect map and equation (5) through (6) is for the enhanced SRAM-based 
defect map with B more extra bits per entry 

CELLSRAMrFrameBuffe AreaPixelsNumArea __8 ××=
 (2) 

)._()_(log _2 PERPixelsNumAreaPixelsNumArea CELLCAMCAM ×××=  (3) 
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)._())_((log 2_ PERPixelsNumAreaBPixelsNumArea SRAMMAPESRAM ×××+=  (5) 
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(6) 

In the equation PER is the value from equation (1). And we assume the ratio of CAM 
cell area over SRAM cell area 9/6 because CAM cell is composed of 9 TRs while 
SRAM is of 6 TRs. Based on the equations above we show the area overhead 
comparison graph in Figure 12 for CAM, Enhanced SRAM with B=0, Enhanced 
SRAM with B=8, and Flag approach. Below the high density defects (BER < 0.5%) 
SRAM-based defect map requires the least area overhead among different types. 
Flag-based defect map requires the least area overhead at higher defect densities. 
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Fig. 12. Area overhead of different types of defect maps 

4.2   Power Overhead Comparison 

To estimate the power consumption with filtering scheme we scaled the published 
memory access frequency data from [8] to fit QCIF image with 30 fps and we used 
the H.264 decoder core power from [9] and estimated our filter core power 



 An Alternative Organization of Defect Map 111 

consumption by the power estimation tool. With the new defect map organization, we 
can expect quite low power consumption. Figure 13 shows the power consumption by 
filtering scheme with the enhanced SRAM-based defect map (B=8) for different 
BERs. Compared with the graph in Figure 6, we see the reduction of the relative 
power of defect map as well as the reduction of the whole power consumption 
reduction by filtering scheme. The defect map consumes less than 13% of the total 
power used by filtering scheme with SRAM-based approach while more than 80% of 
total filtering power is used by defect map access at BER=1.0%. Figure 14 shows the 
power consumption by the filtering scheme with the Flag-based defect map at 
different BERs. We see that the defect map power consumption is constant regardless 
of BERs while frame buffer consumes the power proportional to the defect rates. The 
overall power consumption of Flag-based defect map is slightly larger than that of 
SRAM-based defect map. 
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Fig. 13. The power consumption share by filtering scheme with  SRAM-based defect map 
organization 
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Fig. 14. The power consumption share by filtering scheme with Flag-based defect map 
organization 
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Now, in Figure 15 we compare the power consumption overhead by filtering 
scheme with different defect map organizations (CAM, SRAM, Flag) at different 
BERs. At BER=1.0% the power overhead by filtering with SRAM-based defect map 
and Flag-based defect map are less than 1/4  times of the power overhead by filtering 
with CAM-based defect map. Up to 0.1% BER the SRAM-based defect map is the 
best in terms of area and power overhead.  At very high defect density beyond 0.5% 
BER and upto 1.0% BER, the SRAM-based defect map organization shows still 
slightly better performance than the Flag-based organization in terms of  power 
overhead but, Flag-based approach is better than any other approaches considering the 
area overhead. 
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Fig. 15. Power overhead comparison by  different defect map organizations at different BERs 

5   Conclusion  

We focus on the new memory defect recovery method for the multimedia application 
published in [6] that utilizes the defect map and simple image filters. We found that 
the defect map in [6] will suffer from the power consumption at higher defect density 
in the near future. In this paper we propose alternative defect map organizations that 
can save power consumption by 4 times less than the CAM-based defect map 
organization by using SRAM –based and Flag-based approach.  
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Abstract. In this paper, we explore the problem of designing an effective 
master-slave operating system architecture for multiprocessors and describe 
current status of our prototype implementation, called APRIX (Asymmetric 
Parallel Real-tIme KernelS). This work has been largely motivated by the 
recent emergence of heterogeneous multiprocessors and the fact that the master-
slave approach can be easily applied to heterogeneous multiprocessors while 
SMP (symmetric multiprocessing) approaches are restricted to homogeneous 
multiprocessors with UMA (Uniform Memory Access). The purpose of this 
paper is to identify and discuss design issues that have significant impact on the 
functionality and performance of the master-slave approach. Specifically, our 
study will investigate three major issues: structural design of a master-slave 
operating system based on our experience with a prototype development of 
APRIX, functional design of remote invocation mechanism that is required for 
executing kernel mode operations on a remote procesor, and performance 
improvement via application-specific kernel configuration. We finally describe 
our initial implementation of APRIX and preliminary experiment results. 

Keywords: Master-slave, multiprocessor, design issues, remote invocation, 
kernel configuration. 

1   Introduction 

As demand grows for high performance and reliability, multiprocessor systems are 
becoming more widespread ranging from small-scale embedded devices to large-scale 
supercomputers. From an operating system’s perspective, there exist two major 
classes of operating system architectures for multiprocessor systems. Symmetric 
multiprocessing (SMP) kernels are the most widely used operating system 
architecture. All processors run a single copy of SMP kernel that exists on shared 
memory. Since all processors share the code and data of the SMP kernel, 
synchronization is a key issue for the SMP architecture. Early implementations of 
SMP kernels relied on coarse-grained locking to simplify the synchronization 
problem, but almost all modern SMP kernels are now based on fine-grained locking 
to achieve the maximum parallelism [2, 6, 9].  
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The other class of operating system architectures is the master-slave architecture 
[10], which commonly runs on top of heterogeneous multiprocessors with distributed 
memory. One processor is designated as the master that is responsible for handling all 
system calls and interrupts while other processors are designated as slaves that 
execute application tasks only in user mode. This organization greatly simplifies the 
problem of synchronization since only the master can access the kernel code and data. 
However, as the number of slaves increases, the master will become a critical 
performance bottleneck. 

In this paper, we explore the problem of designing an effective master-slave operating 
system architecture for multiprocessors, and also describe the current status of our 
prototype implementation, called APRIX (Asymmetric Parallel Real-tIme KernelS). 
This work has been largely motivated by the recent emergence of heterogeneous 
multiprocessors such as Philips Nexperia, TI OMAP, ST Nomadic, Qualcomm MSM, 
and STI Cell [14]. Processor heterogeneity may offer many opportunities to better 
reduce the development cost and resource consumption while meeting application-
specific performance requirements [22]. As a result, heterogeneous multiprocessors are 
expected to become widespread in future embedded systems. One advantage of the 
master-slave approach is that it can be easily applied to heterogeneous multiprocessors 
while the SMP approach is restricted to homogeneous multiprocessors with UMA 
(Uniform Memory Access). Additionally, the master-slave approach allows a more 
straightforward way of implementation than the SMP approach due to the simplified 
synchronization problem. In spite of these, however, it seems that the inherent 
performance problem of the master-slave architecture has rendered it less well studied 
than the SMP approach.  

The purpose of this paper is to identify and discuss design issues that have 
significant impact on the functionality and performance of the master-slave approach. 
Specifically, our study will investigate three major issues that are closely related to 
the architecture and performance of the master-slave approach. The first issue is the 
structural design of a master-slave operating system. We will discuss how a master-
slave operating system can be constructed from a legacy uniprocessor operating 
system. This discussion will be based on our experience with a prototype 
development of APRIX. The second issue is the functional design of remote 
invocation mechanism. As mentioned above, all the kernel mode operations are 
executed only in the master. When a task on some slave requests a kernel mode 
operation like a system call, this request must be serviced by the remote master. We 
will show that a naive approach to remote invocation may raise serious performance 
problems such as indefinite task blocking and priority inversion, and also show that a 
priority-based approach can overcome these problems. The last issue is closely related 
with the inherent architectural problem of the master-slave approach. When 
application tasks involve a significant portion of kernel mode operations, the master 
may become a critical bottleneck. The problem will be made worse as the number of 
processors increases. To tackle this problem, we suggest a component-based kernel 
architecture and application-specific kernel configuration. With a priori knowledge 
about the application tasks’ behavior, each kernel can be configured such that all the 
required implementations are included within the kernel itself. This will effectively 
reduce the number of interactions between the master and slaves, and thereby 
achieving much higher performance. 
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We finally present the initial implementation of APRIX and preliminary 
experiment results. Unfortunately, the current implementation offers a limited set of 
features we describe above, and our experiments thus do not provide comprehensive 
results. We believe that a thorough evaluation of our approach can be reported with a 
full APRIX implementation in the near future. 

1.1   Related Work 

Traditional SMP kernels have evolved from monolithic uniprocessor kernels [4, 5, 6, 7, 8]. 
Since several processors can execute simultaneously in the kernel and may access the 
same kernel data structures, sophisticated synchronization mechanisms were required in 
adapting uniprocessor kernels to SMP versions. 

Early uniprocessor kernels like UNIX operating systems prevented more than one 
kernel thread or interrupt handler from executing at the same time in the kernel [4]. 
For instance, any thread running in the kernel can continue its execution without 
being preempted until it completes its kernel mode operations or voluntarily blocks 
for some resources. However, it is still possible for the thread to be interrupted from 
hardware. The interrupt handler may manipulate the same data structures with which 
the current thread was working. A conventional approach to this problem has been 
masking interrupts whenever the thread executes a critical region of code. 

However, the above protection schemes are not enough in multiprocessor 
environments since several processors can simultaneously execute in the kernel. This 
requires that the kernel be partitioned into critical regions and at most one thread of 
control can execute in a critical region at a time. In the most extreme case, the entire 
kernel can be considered as a single big critical region. This allows only one processor 
to be active in the kernel while other processors are prevented from entering the kernel 
[2, 3, 1]. This, called the giant lock approach, may greatly simplify the implementation 
of SMP kernel, but may suffer from contention on the giant kernel lock.  

On the other hand, fine-grained locking can mitigate the contention problem by 
partitioning the kernel into a number of smaller critical regions [6, 9]. This scheme 
requires more careful design and is more prone to errors such as deadlocks. But it is 
able to produce much higher performance gain than the coarse-grained locking 
scheme. Consequently, many modern operating systems rely on fine-grained locking. 
Examples based on fine-grained locking include the FreeBSD [2], AIX [6], and 
Solaris [9]. 

In the master-slave approach, one processor is designated as the master that can 
execute in kernel mode while other processors are designated as slaves that execute 
only in user mode. In [10], Goble et al. implemented a master-slave system on a dual 
processor VAX 11/780, where the master is responsible for handling all system calls 
and interrupts. Slaves execute processes in user mode and send a request to the master 
when a process makes a system call. Recent work on the master-slave approach has 
been reported in [11]. Kagstrom et al. attempted to provide multiprocessor support 
without modifying the original uniprocessor kernel. Their idea was to create and run 
two threads for each application, a bootstrap thread and an application thread. The 
application thread runs the application on the slave and the bootstrap thread runs on 
the master awaiting a request for system call. On receiving a request, the bootstrap 
thread then calls the requested system call on behalf of the application thread. 
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There exist another interesting approaches called asymmetric kernels [12, 13], 
where each kernel provides different OS services. For example, one kernel may 
provide network services while another provides file system services. The AsyMOS 
(Asymmetric Multiprocessor Operating System) in [12] assumes SMP hardware, but 
assigns different functions to different processors. It divides processors into two 
functional groups, device processors and application processors. Each device 
processor is dedicated to a specific device such as network card or disk controller 
while the application processor runs a native kernel. The kernel that runs on the 
device processor, called light weight device kernel (LDK), includes and executes all 
device-specific code, thus producing increased performance for I/O-intensive 
applications.  

The remainder of this paper is organized as follows. Section 2 describes the 
structural design of a master-slave operating system. Section 3 presents two 
techniques for performance optimization in the master-slave approach. Section 4 
describes a prototype implementation of APRIX and experiment results. Section 5 
concludes this paper with future work. 

2   Structural Design of Master and Slave Kernels 

The master-slave approach can be applied to a wide range of multiprocessor 
architectures while the SMP approach is restricted to homogeneous multiprocessors 
with shared memory. Note that the seminal work by Goble et al. [10] was performed on 
homogeneous processors. In this paper, however, the primary target of our master-slave 
operating system is heterogeneous multiprocessors such as the Cell processor [23].  

We begin with a simple model of master-slave that is similar to that of [10]. The 
master kernel has two basic functions: assigning application tasks to slaves and 
providing kernel services to slaves. Every slave, on the other hand, has a simple 
function of executing application tasks in user mode. Note that the master kernel itself 
is also able to run application tasks. 

Based on the above master-slave model, we assume two-level priority-based task 
scheduling. The master has a global scheduler that selects the highest priority task 
from a single global run queue and assigns it to a slave processor. Each slave has a 
local scheduler that selects the highest-priority task from a local run queue. The local 
run queue stores runnable tasks that have been assigned by the global scheduler. In 
this paper, we will focus on architectural and performance issues rather than 
algorithmic issues about multiprocessor. For a general review of multiprocessor 
scheduling for embedded real-time systems, see [24]. 

2.1    Organizing Master and Slave Kernel Structures 

We now describe how to organize master and slave kernels from an existing 
uniprocessor kernel. Recall that the main functions of master kernel include assigning 
application tasks onto slaves and servicing kernel mode operations requested by 
slaves. Therefore, it is very straightforward to organize the master kernel’s structure. 
It can be done by incorporating the original uniprocessor kernel with additional 
components to support the above two functions. The additional components are a 
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global task scheduler and a kernel service handle, which are responsible for task 
assignment and kernel services, respectively. Fig. 1 shows a typical structure of 
embedded operating system for uniprocessor and Fig. 2 (A) shows the master kernel’s 
structure, where shaded boxes represent added components and white boxes represent 
native components. In fact, Fig. 1 has been taken from our research kernel QURIX 
intended for uniprocessors and Fig. 2 has been taken from our initial version of 
APRIX. 

 

Fig. 1. A common structure of embedded operating system for uniprocessor 

 

(A) Master kernel’s architecture              (B) Slave kernel’s architecture 

Fig. 2. Structures of master and slave kernels for multiprocessors 

The slave kernel requires a minimal set of functions. First, it should be able to 
create, schedule, and execute application tasks assigned by the master kernel. Second, 
it should be able to support remote invocation of kernel mode operations. As a result, 
many of the original components can be removed from the uniprocessor kernel while 
the scheduler and task manager remain. The slave kernel also requires two additional 
components, a local dispatcher and a kernel service proxy that are responsible for 
handling master’s command for task assignment and managing remote invocation, 
respectively. Fig 2 (B) shows the resulting structure of slave kernel. 
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2.2    Interactions Between Master and Slave Kernels 

There are two types of interactions between master and slaves. The first type of 
interaction is associated with task assignment and scheduling. When the global 
scheduler in the master decides to assign a task to a slave, it initiates communication 
by sending a message to the slave. On receiving the message, the slave’s local 
dispatcher interprets the message and immediately requests the thread manager to 
create a new task. The local dispatcher has another function. It should inform the 
master when some scheduling event occurs. For instance, if a task completes, the 
local dispatcher informs the master of this event.  

The second type of interaction is carried out for remote invocation of kernel mode 
operations. When a task on slave invokes a kernel mode operation such as a system 
call, the kernel service proxy in the slave initiates communication by sending a 
message to the master. The kernel service handler in the master then invokes the 
requested operation and returns results to the kernel service proxy. 

In order to enable the above interactions between master and slaves, both kernels 
should incorporate a common component, called inter-processor communication 
component. Since the implementation of this component mostly depends upon the 
underlying hardware architecture and communication mechanisms, it is desirable to 
place the component at the lowest layer of kernel structure such as HAL (hardware 
abstraction layer). The inter-processor communication component should be 
implemented to provide a minimal set of message passing interfaces including send 
and receive. These interfaces may be implemented by using an interrupt mechanism 
when inter-processor interrupt is supported by the hardware or a polling mechanism 
when global shared memory is available. 

2.3    Remote Invocation Mechanism 

Remote invocation is not new. It has been well studied in the fields of middleware 
and distributed operating systems. However, we need to revisit this issue since it has a 
significant impact on the performance in the master-slave architecture. 

Remote invocation is supported by the kernel service proxy in slave and the kernel 
service handler in master. The slave-side proxy is merely a procedure that looks like 
the requested kernel operation. Its main function is to convert the operation name and 
parameters into a message and send the message to the master by using the send 
operation provided by the inter-processor communication component. The master-
side kernel service handler receives the message, and parses the received message to 
extract the operation information. It then invokes the requested operation, packs the 
result into a message, and sends it to the slave. The slave-side proxy in turn gets 
control back, extracts the result from the message, and returns the result to the caller 
task. Since processors may have different endian formats, the kernel service proxy 
should also handle endian problems. 

It should be noted that remote invocation cannot directly support call-by-reference 
evaluation even though many system calls involve passing pointers as parameters. 
The reason is that the call-by-reference relies on the existence of a shared address 
space, in which the referenced data exist and is accessible to the callee. In remote 
invocation with distributed memory, the caller and callee generally have separate 



120 M. Seo et al. 

address spaces, and referenced data thus cannot be accessed by the callee. A well-
studied technique to this problem is call-by-copy-restore. Call-by-copy-restore copies 
the referenced data and makes it accessible to the callee. When the call is complete, 
all the modifications made during the call are reproduced on the original data. This 
call-by-copy-restore has almost the same effect as call-by-reference. 

Note that remote invocation can also be used between application tasks. When an 
application task requires a certain function provided by a remote application task, then 
user-level remote invocation would be useful. However, the user-level remote 
invocation is beyond the scope of operating system, and thus we consider only the 
kernel-level remote invocation in this paper. 

3   Performance Optimization Considerations 

In this section, we discuss two important performance issues in the master-slave 
approach. The first issue is associated with the design choice for remote invocation 
mechanism. We show that if not properly designed, the remote invocation mechanism 
may lead to serious performance problems such as indefinite task blocking and 
priority inversion. We then show that a priority-based approach can overcome these 
problems. The second issue is closely related with the inherent architectural problem 
of the master-slave approach. As mentioned earlier, the master may become a hot spot 
of contention as the number of slaves increases. To tackle this problem, we suggest a 
component-based kernel architecture and application-specific kernel configuration.  

3.1    Priority-Based Remote Invocation in Top Half 

There are two ways of servicing a remote invocation request for kernel operation, top 
half and bottom half approaches. Note that in UNIX terminology [16], the kernel can 
be divided into top half and bottom half. The top half of the kernel provides services 
in response to system calls or synchronous traps and the bottom half of the kernel 
provides services in response to hardware interrupts. Both the top half and bottom 
half execute in a privileged execution mode, but the top half runs in a task context 
while the bottom half runs with no task context. Note that the terms top half and 
bottom half have different meanings when used within the context of interrupt 
handling [3]. 

The bottom half of kernel is simply a set of routines that are invoked to handle 
interrupts. Consequently, servicing a remote invocation request within bottom half 
may be straightforward and fast. However, the bottom half approach has three serious 
drawbacks. First, it can only be used for operations that can be executed safely in an 
interrupt handler. In most operating systems, interrupt handlers are not allowed to 
block. Since blocking and resuming requires a per-task context, an interrupt handler 
cannot relinquish the processor in order to wait for resources, but must run to 
completion. Second, the bottom half approach may lead to indefinite blocking of the 
current task that was running before the interrupt occurs. When a series of remote 
invocation requests arrive at the master, the application tasks on the master kernel will 
be interrupted and must wait until all the requests are completely serviced. 
Furthermore, new requests may arrive during the old requests are being serviced. This 
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implies that the application tasks can suffer from indefinitely long blocking. Third, 
since interrupt handling commonly has a higher priority than application tasks, high 
priority tasks may be interrupted by the remote requests initiated by low priority 
tasks. 

On the other hand, servicing a remote invocation request within top-half allows the 
kernel service handler to execute in a task context. This permits the requested 
operation to block during its execution. Note that the top half approach may be slower 
since it requires a context switch out of the interrupt handler and may require 
synchronization with other tasks running in the kernel. It also requires more 
complicated implementation. In spite of these, the fact that many system calls involve 
blocking and the other two drawbacks of the bottom half approach necessitate the top 
half approach. 

The other two drawbacks of the bottom half approach can be overcome by 
combining the top-half approach with a priority scheme. A priority is associated with 
each request for remote invocation. The priority may be designated by the 
programmer or may simply be inherited from the task that made the request. When 
the kernel service handler gets control, it services all the pending requests that have 
higher priorities than the current task. The lower priority requests can be checked and 
serviced later when the handler gets control again. Note that the handler can get 
control in two cases, when a new request for remote invocation arrives or when the 
processor switches from kernel space to user space. In this way, we can ensure that 
high priority tasks never be preempted by requests originated from low priority tasks. 

3.2   Application-Specific Kernel Configuration 

The master-slave architecture does not scale well since the master may become a 
bottleneck. To tackle this problem, we propose to use a kernel that has a highly 
modular architecture and to configure each kernel to match application-specific 
requirements. By including only the kernel components required by the slave’s tasks, 
the number of interactions between master and slave kernels can be minimized. This 
approach raises another difficult problem of software modularization and 
composition. Fortunately, there have been some recent advances in this area and now 
many useful solutions are available. 

Configurability has been heavily investigated in the fields of programming 
languages, middleware, and operating systems. Friedrich et al. provide an exhaustive 
survey ranging from statically configurable operating systems to dynamically 
reconfigurable operating systems [17]. Many of the configurable operating systems 
described in [17] can be used for our purpose. Microkernel-based operating systems 
such as L4 [18] and Pebble [19] allows the operating system to be tailored to 
application-specific requirements. However, the microkernel-based operating systems 
have limited configurability in that they always require a fixed set of core 
functionality to be included in all the application. The IPC (inter-process 
communication) cost is another issue since operating system services are 
implemented as user-level servers in microkernel approaches. On the other hand, 
component-based operating systems like OS Kit [20] and eCos [21] do not assume 
any fixed set of functionality, and seem to be more appealing for the general problem 
of application-specific kernel configuration.  
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We are currently working on improving the configurability of APRIX that has almost 
a monolithic structure. We have the same goal of application-specific configurability as 
that of [18, 19, 20, 21]. Our approach, however, is a bit different in that we consider 
system calls as a unit of operating system configuration. In our master-slave 
architecture, system calls are the main source of performance degradation. As a result, if 
we can organize each kernel such that only the fine-grained components required to run 
the application are included within the kernel, then the number of interactions between 
the master and slaves may be significantly reduced. Here we briefly describe our 
strategy for the development of highly-configurable APRIX. 

The first step of our strategy is to partition all APRIX functions including system 
calls and in-kernel functions into groups according to their functional similarity. The 
second step is to refine the initial groups into a number of fine-grained components 
according to the level of cohesion between functions. Bieman et al. provides a useful 
method for quantitatively measuring functional cohesion [22], in which the method is 
based on a program slice that is the portion of program text that affects a specified 
program variable. We make use of the method in [22] for the second step, and the 
resulting components are considered as a unit of configuration. In the last step, we 
encapsulate state and functionality within each component to reduce coupling 
between components. We then explicitly define system calls that exist in each 
component as the exported interfaces for that component. 

4   Case Study: Developing APRIX on MPSoC-II  

An initial version of APRIX has been implemented with a uniprocessor kernel—
QURIX that we had developed for academic purpose in year 2004. The development 
of APRIX is still going on and the current version provides a limited subset of the 
features that we describe in Section 2 and 3.  

QURIX is a library that can be statically linked with an application. It is able to 
execute a multithreaded application within the single address space. The overall 
structure of QURIX is shown in Fig. 1. At the lowest level, it has a HAL (Hardware 
Abstraction Layer) that consists of three parts, CPU-dependent code, variant-dependent 
code for managing MMU, FPU, DMA, interrupt controller, and I/O-dependent code for 
I/O devices such as UART and timer. Above the HAL layer, QURIX has six 
components: a priority-based scheduler, a thread manager that is responsible for thread 
creation and termination, a light weight flash file system, a network manager for serial 
communications, a memory manager, and a device manager, which together provide 
fundamental operating system services to application software via system call layer. 
QURIX provides a subset of POSIX 1003.1 standard interfaces at the system call layer 
to support thread management, synchronization, I/O operations, dynamic memory 
management, and a number of standard C library functions.  

APRIX runs on a four-processor board—MPSoC-II that is a general-purpose proto-
typing board for developing MPSoC-based electronic designs. The major components 
of the prototyping board include four ARM926EJ-S processors, 1MB shared memory, 
and 64MB local memory for each processor. The current implementation of APRIX is 
shown in Fig. 2 (A). APRIX makes use of the 1 MB shared memory to exchange 
messages between the master and slaves. APRIX maintains four types of queues within 
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the shared memory. They include task allocation queue, task status queue, kernel service 
call queue, and kernel service return queue. Each of these queues is created and 
maintained on a per-slave basis, thus four queues for each slave. 

When the master’s global scheduler decides to assign a task to a slave, it puts a 
message onto the task allocation queue associated with the slave. The message contains 
a thread identifier, priority, the name of function to be created as a thread, and 
parameters to the function. The slave’s local dispatcher then takes the message from the 
queue and requests its thread manager to create the requested task. When some 
important events occur such as blocking or termination, the local dispatcher informs the 
master via the task status queue. When a task running on a slave invokes a system call, 
the local dispatcher performs marshaling and puts a message onto the kernel service call 
queue. The message contains the slave’s identifier, task’s identifier, system call number, 
and parameters to the system call. The master’s kernel service handler in turn executes 
the requested operation and return results via the kernel service return queue. 

Table 1. Overheads of allocating tasks and reporting task status 

Operation Ave. Max. Min. 
Master’s writing to task allocation queue 47.2 us 53.8 us 46.8 us 
Slave’s reading from task allocation queue 99.8 us 113.4 us 100.4 us 
Slave’s writing to task status queue 37.6 us 40.2 37.4 us 
Master’s reading from task status queue 71.8 us 77.2 70.2 us 

Table 2. Overheads of requesting a system call and returning results 

Operation Ave. Max. Min. 
Slave’s writing to kernel service call queue 35.0 us 37.2 us 34.2 us 
Master’s reading from kernel service call queue 52.4 us 53.4 us 51.0 us 
Master’s writing to kernel service return queue 34.4 us 34.8 us 34.2 us 
Slave’s reading from kernel service return queue 56.4 us 60.0 us 56.4 us 

We performed experiments to measure communication costs with all ARM 
processors running at 50 MHz. The overheads of allocating tasks and reporting task 
status are given in Table 1 and the overheads of requesting a system call and returning 
a result are given in Table 2. 

We performed another experiments to concentrate exclusively on the computat-
ional performance of APRIX kernels. We constructed a simple benchmark application 
that does not involve any system calls, thus minimizing the cost for communications 
between master and slaves. The benchmark creates three threads and each thread 
independently executes 1000 multiplications of 6x6 matrices. Running this benchmark 
gave 2.9 seconds with a single processor, 1.7 seconds with two processors, and 1.1 
seconds with three processors. This indicates that the speedups over the single processor 
are 1.705 and 2.636 with two processors and three processors, respectively. From the 
above experiment results, we may be certain to some extent that the APRIX kernels 
have been correctly designed and implemented, and that reasonable performance can be 
achieved through our design. 
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5   Conclusion 

In this paper we presented an effective master-slave operating system architecture for 
heterogeneous multiprocessors with distributed memory. We reported our experience 
with the initial APRIX development, and this will provide some degree of guidance to 
the implementor who wants to employ the master-slave model. We also identified 
performance issues that are inherent to the master-slave architecture and proposed 
effective techniques including the priority-based handling of remote invocations and 
application-specific kernel configuration. 

We could not perform thorough evaluation for the proposed techniques since the 
implementation was not complete at the moment of this writing. We will continue to 
implement the techniques described in Section 2 and 3, with a special emphasis on 
factoring APRIX kernels into fine-grained components.  
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Abstract. In this paper, we propose the first interrelated power and latency 
mathematical model for the Networks-on-Chip (NoC) architecture with mesh 
topology. Through an analytical approach, we show the importance of tile 
selection in which the hot (frequently accessed) IP core is mapped. Taking into 
account the effect of blocking in both power and latency models, causes the 
estimated values to be more accurate. Simulation results confirm the reasonable 
accuracy of the proposed model. The major output of the model which is the 
average energy consumption per cycle in the whole network is the efficacious 
parameter that is most important and must be used by NoC designers.  

Keywords: Power model, Latency model, Network on chip, System on chip, 
Mesh, IPs/Cores mapping. 

1   Introduction 

NoC has been emerging as potential tile-base architecture which offers scalable and 
highly utilized bandwidth architectures for implementing system-on-chips (SoCs)  
[1, 2]. Since in upcoming years, it is expected that the number of tiles in NoCs 
becomes enormous, one of the key factors in designing tile-base NoCs is topological 
placement or mapping of IPs/cores onto the tiles. 

The mapping problem affects the average message latency and also overall power 
consumption in NoC. In [3, 4], authors used a branch-and-bound algorithm to map IPs 
onto tiles in which total communication energy consumption is minimized under 
performance constraints. The same work is done by S. Murali et al. [5] considering 
the mesh NoC architecture. In [6], a two-step genetic algorithm is proposed for 
mapping an application on to NoC architecture with a two-dimensional mesh of 
switches as a communication backbone. 

In this work, we model the degree of intensity of events, tasks, and elements that 
have an impact on the average power and latency of NoCs through an analytical 
model; these include degree of buffer multiplexing, blocking of the message, leakage 
power, routing algorithm, traffic pattern, minimum distance, message length and etc. 
Since mathematical modeling is perhaps the most cost-effective and versatile way, 
which can be used for testing and evaluating the system’s performance (latency and 
power) under different working conditions and configurations, therefore the aim of 
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this study is to make an overall view and perception on the effects of sensitive 
parameters to mapping problem. 

2   Energy Consumption Model 

An analytical energy consumption model in a two-dimensional mesh that uses wormhole 
switching is derived and validated. As presented in figure 1, each node in NoC 
architecture consists of a crossbar switch which has X input physical channels as well as 
an injection channel and X output physical channels in addition to an ejection channel. 
Each physical channel is associated with V buffers (virtual channels). Arbiter unit which 
chooses the path and connects and disconnects the input channel with an appropriate 
output channel based on the routing algorithm and network status information, is the other 
part of the NoC node. Here, the measure of interest is the power consumption per 
message. In order to achieve an accurate power model for a message crossing the network, 
we have to take into account both static and dynamic powers a message may consume. 
Static power is the power dissipated when the message crosses the network without 
contention. This implies that the message does not encounter any blocking while traveling 
the network. Therefore, for a specific pair of source and destination nodes, the static 
energy consumed by a flit message crossing the given pair is directly proportional to the 
Manhattan distance between source and destination. Thus,  

( ) ( )( ) ( ), , 1 ,flit
static node linkE s d dis s d E dis s d E= + × + × ,  

 ( ), d s d sdis s d X X Y Y= − + −  (1) 

where
nodeE  is the power dissipated in a node per flit transfer or intra-node power 

dissipation per flit transfer. 
linkE  is the inter-node (link) power dissipation per flit 

transfer and ( ),dis s d is the Manhattan distance between source and destination. 

 

Fig. 1. NoC node structure 
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Intra-node power dissipation in turn is divided into three parts. According to 
figure 1, when a flit emerges at the head of the virtual channel (buffer) an amount of 
energy is dissipated for writing/reading the flit message to/from the input buffer. The 
energy dissipated during writing and reading process is referred to as buffering 
energy. Another part of intra-node energy dissipation is as a result of traversing the 
flit through crossbar switch, 

swE . The decision made by the arbiter to send the header 

flit to the desired virtual channel of physical channel (link) of interest is the last part 
of the intra-node energy consumption. Note that the last part of energy is solely 
considered for the header flit, according to the fact that the header flit reserves the 
path in which the tail follows, therefore only the header deals with the arbiter. 
Although arbitration unit consumes negligible energy, but in order to have an 
exhaustive model we distinguish between the intra-node energy consumption for the 
header flit and the rest of the message flits (tail). Thus [7, 8] 

{ ,

,

     for header flit
                for tail flit

node h wrt rd arb sw

node t wrt rd sw

E E E E E
node E E E EE = + + +

= + +=  (2) 

By considering the message length, L, and the effect of pipelining, the static part of 
the energy dissipated by such a message crossing from source node s to destination 
node d is calculated as 

( ) ( )( ) ( )( )
( ) link

tnodehnodestatic

EdsdisL

ELEdsdisdsE

××+
⋅−+⋅+=

,

11,, ,,  
(3) 

Wormhole routers stop the message “in place” when its head is blocked.  The head 
of the message stops, and the remainder of the message is stopped, holding the buffers 
and channels along the path it has already formed [9]. 

As presented in [10], virtual channels (buffers) used in the router architecture are 
implemented as SRAM arrays. SRAM cells contribute to three different phases 
referred to as write, read and idle phase [11]. The leakage current associated with data 
retention in idle phase is a considerable source of power dissipation. The effect of the 
leakage power is highlighted especially when the number of messages in the network 
increases (number of contentions goes up). Therefore, the effect of blocking of the 
message in the network may vary the total energy consumption per cycle in the 
network. During the blocking of message, all buffers occupied by the message are in 
idle phase and if we assume 

idleE  as the energy dissipated in one clock cycle of idle 

phase in a flit buffer, then the product of blocking time, 
blockingT , and 

idleE results in 

considerable energy dissipation for each flit buffer.  Figure 2 shows a sample scenario 
on which the calculations are based. In order to calculate blocking time of the 
message in node a  given that the message generated at a specific node, s, and 
destined to another specific node, d, it is necessary to compute the blocking 
probability of the message in node a, the probability that the given node is traversed 
by the message and the minimum waiting time seen by the message in that node to 
acquire one free virtual channel. Therefore, the blocking time can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )min, ,
pass block

blocking s d s dT a P a P a W a= × ×  (4) 
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Probability
 ( ) ( ),

pass
s dP a  can be calculated by computing the probability of traversing 

the permitted channels to node a by the message and adding up all theses 
probabilities. The permitted channel to node a is an incoming channel to the given 
node located in at least one of the minimal paths between s and d. Therefore, these 
channels can be mathematically represented by 

( ) ( ){ } , , 1INch b dis b d dis a d= = +  (5) 

Then, we can write 

( ) ( ) ( ), , ,pass pass
s d s d

b INch

P a P b a
∈

= < >∑  (6) 

In order to calculate
( ), ,pass
s dP b a< > , first it is necessary to calculate the probability 

that channel ,b a< >  is traversed given that the node b is traversed, 
( ) ( ), ,  pass
s dP b a b< > . 

Since the topology used in this study is two-dimensional mesh, possible outgoing 
physical channels from an intermediate node toward the destination may be in 
dimension X, Y or both. If there is just one possible outgoing physical channel from 
the given node to the destination (node h and g in figure 2), the mentioned conditional 
probability will be simply 1, 

( ) ( ), , 1pass
s dP g d g< > =  (7) 

If the message can be routed in both dimensions X and Y, the probability that the 
message traverses dimension X is given by 

( ) ( ) ( )

( )( )
{ } ( ) ( )aWWadaada

adaada

adaada
pass

ds

abPcbP

abPcbP

abPcbPbcbP

=><⋅><+

><−><−+

><><−=><

mindet&

det&

det&,

,,

,1,1
2

1

,,1,
 

(8) 

where ,adaP b c< >  is the probability that all the adaptive virtual channels associated to 

the physical channel ,b c< >  are busy and 
&det ,adaP b a< >  is the probability of all the 

adaptive and deterministic virtual channels of the physical channel ,b a< >  being 

busy. The first term in the above equation expresses the probability that all adaptive 
virtual channels associated to the physical channel located along with dimension Y is 
occupied by other messages and all deterministic and adaptive virtual channels 
associated to the physical channel located in dimension X is free; therefore, the 
message is routed through dimension X. The second term shows the probability that 
both physical channels are free so the routing function uses one of them selectively 
with the fair probability of 0.5. The last term considers the situation where both 
channels are busy. Therefore, choosing the channel with minimum waiting time is 
inevitable and the term is added when the calculated waiting time associated with 
dimension X is smaller. The probability that the message traverses dimension Y is 
calculated in the same manner with a little difference. Since the deterministic routing 
function used in the model is dimension-ordered, it should be noted that if a permitted 
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physical channel exists in dimension X as an alternative to one exists in dimension Y, 
the channel belongs to dimension X is always chosen as the skip channel [14]. Thus,  

( ) ( ) ( )

( )( )
{ } ( ) ( )cWWadaada

adaada

adaada
pass

ds

abPcbP

abPcbP

abPcbPbcbP

=><⋅><+

><−><−+

><><−=><

mindet&

det&

det&,

,,

,1,1
2

1

,,1,
 

(9) 

The probability of traversing a specific channel, ,b a< > , by the message 

originated from node s and destined to node d is achieved by 

( ) ( ) ( ) ( ), , ,, ( ) ,pass pass pass
s d s d s dP b a P b p b a b< >= × < >  (10) 

Therefore,
( ) ( ),  pass
s dP a can be obtained by the following iterative process: Step 1) 

( ) ( ) ( ), , ,pass pass
s d s d

b INch

P a P b a
∈

= < >∑ ;  Step 2) 
( ) ( ) ( ) ( ), , ,, ( ) ,pass pass pass
s d s d s dP b a P b p b a b< >= × < > ; Step 

3) if (b != s) then go to step 1 else ( ) ( ), 1pass
s dP s = . 

( ) ( ),
block
s dP a  is the probability that all adaptive virtual channels of all the physical 

channels that can be traversed and the deterministic virtual channel of the only 
physical channel that can be traversed deterministically are all busy. Therefore, 

( ) ( ) &det, , ,block
ada adas dP a P a e P a f= < > × < >  (11) 

The minimum waiting time tolerated by the message on node a, ( )minW a , to have at 

least one free virtual channel among all physical channels of dimensions still to be 
traversed may be treated as an M/G/1 queue. Therefore, as an example the waiting 
time on channel ,a e< >  can be written as 

( )

( )

2

,2
, , 2

,

,
, ,

. . 1

2 1 .

a e
a e a e

a e

a e

a e a e

Ser L
Ser

S
W

Ser

λ

λ

< >
< > < >

< >

< >
< > < >

⎛ ⎞−
⎜ ⎟+
⎜ ⎟
⎝ ⎠=

−
 

(12) 

in which 
,a eλ< >

 is the traffic rate on channel ,a e< > , 
,a eSer< >

 is the average service 

time of the given channel and ( )2

,a eSer M< > −  is the variance of the service time 

distribution, as suggested in [12]. Therefore, the (dynamic) energy consumed due to 
message blocking on node a is given by 

( ) ( ) ( )( ), 1dynamic blocking idle flitE a T a dis s a E B= × + × ×  (13) 

where 
flitB  is the size of a virtual channel of the router in flits. 

The dynamic energy dissipated for the message which is transferred from a specific 
source node, s, and destined to another specific node, d, can be calculated as the 
aggregate of the energy consumed for all intermediate nodes located in at least one of 
the minimal paths between s and d. Thus, 
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( ) ( ) ( )( )
( ),

, , 1
s d

dynamic blocking idle flit
a G

E s d T a dis s a E B
∈

= × + × ×∑
 

( ) ( ) ( ) ( ){ },  , , ,s dG a dis s a dis a d dis s d= + =  
(14) 

Now taking into account both parts of energy dissipation (dynamic and static) per 
message transfer, the total energy consumed for the aforementioned message is 

( ) ( ) ( ), , ,total static dynamicE s d E s d E s d= +  (15) 

Since the mesh topology is not symmetric and the traffic is not evenly distributed 
over network channels, average energy consumption in the network can be achieved 
by averaging over all per message energy dissipation for all pairs of source and 
destination. Thus 

( ) ( )
( ),

1
,

1
total total

s d G G

E E s d
N N ∈ ×

= ⋅
⋅ − ∑  (16) 

3   The Latency Model 

When developing the latency model we use assumptions that have been widely used 
in similar modeling studies [12, 13, 14 and 15]. Messages are generated at each node 

according to a Poisson function with an average of nodeλ messages per cycle. This 
study assumes that there is only a single hot IP in the network. The main reason 
behind this restriction is to keep the notation used for describing the model at a 
manageable level. Some directions are made to extend the model to deal with 
different nodes with different traffic generations. 

The mean message latency is composed of the mean network latency,S , that is the 
time to cross the network, and the mean waiting time seen by a message in the source 
node, 

sW . However, to capture the effects of virtual channels multiplexing, the mean 

message latency has to be scaled by a factor, V , representing the average degree of 
virtual channels multiplexing that takes place at a given physical channel. Therefore, 
we can write the mean message latency as [13, 14] 

( )sS W VΤ = + ×  (17) 

For each node like i in the network, we can define a set of probabilities 

{ },1 ,2 , 1 , 1 ,, ... , ...i i i i i i i Nα α α α α− +
in which 

,i jα is the probability that the generated 

message in node i is directed to node j. The similar set of probabilities, 

{ },1 ,2 , 1 , 1 ,, ... , ...i i i i i i i Nβ β β β β− +
, can be defined where

,i jβ  is the probability that the 

received message in node i is sent from node j.  The following formula shows the 
relation between these two probabilities 

( ), , ,
1,

1
N

j i i j x j
x x i

β α α
= ≠

= ⋅ −∏  
(18) 
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In this study, for simplicity of the model, we assume that each generated message 
has a predefined probability α of being directed to the hot IP and probability ( )1 α−  

of being directed to the other network nodes (the destination node of a message is 
randomly chosen among other network nodes). Therefore, S , which is the average 
network latency, can be computed as 

( )1 l hS S Sα α= − ⋅ + ⋅  (19) 

where 
hS  is the average network latency for the messages being directed to the hot IP 

and 
lS  is the network latency for other messages in the network. 

lS  can be 

determined by averaging the latency of messages generated at all possible source 
nodes, destined to all possible destination nodes except the hot node as destination. 
Therefore, we have 

( ) ( )
( )

,
, ,

1
 

1l s d
s d G G d h

S S
N N ∈ × ≠

= ⋅
− ∑  (20) 

hS  is determined by averaging the latency of the messages whose destination is the 

hot node. 

( ) ( ),
,

1
  

1h s d
s G d h

S S
N ∈ =

=
− ∑  (21) 

where 
( ),s dS  is the network latency seen by a message originated from a specific 

source node, s, and destined to another specific node, d. Therefore, 

( ) ( ) ( )
( ),

, ( , )
s d

r s s blockings d
a G

S dis s d t t L t T a
∈

= ⋅ + + ⋅ + ∑  
(22) 

st is the transfer time of a flit between any two routers and 
rt  is the time in which 

the arbiter makes the decision to send the header to the desired output channel. 
For a specific node s in the network, the average latency seen by a message 

originated at that node to enter the network, 
sS , is equal to the average of all 

( ),s dS  for 

{ }d G s∈ − ,  resulting in 

( ) ( )
{ }

( ), ,
,

1
1

1s s d s d
d G s h d h

S S S
N

α α
∈ − =

⎛ ⎞
= − + ⋅⎜ ⎟⎜ ⎟− ⎝ ⎠

∑ ∑

 

(23) 

The mean waiting time in the source node is calculated in a similar way to that for 
a network channel. A message in the source node can enter the network through any 
of the V virtual channels. Therefore, modeling the local queue in the source node as 
an M/G/1 queue with the mean arrival rate /node Vλ and service time 

sS  with an 

approximated variance ( )2

sS L−  yields the mean waiting time as [12] 
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( )

( )( )

2
2

2

1

2 1

s
node s

s

s

node s

S Lλ /V S
S

W
 λ /V S

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
− ⋅

 (24) 

The probability 
, ,v a eP < >

 that v virtual channels are busy at a specific physical 

channel ,a e< >  can be determined by a Markovian model as shown in [15]. That is 

, ,, 0

0, , ,
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                   1 1
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j v a e
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(25) 

When multiple virtual channels are used per physical channel, they share the 
bandwidth in a time-multiplexed manner. The average degree of virtual channel 
multiplexing for a given physical channel ,a e< >  and (by averaging over all channel) 

a typical physical channel can be estimated by [15] 

2
, ,

1
,

, ,
1

V

v a e
v

a e V

v a e
v

v P
V

v P

< >
=

< >

< >
=

⋅∑
=

⋅∑  

 and

   ( )

,

,  all channels

2 1

a e

a e

V

V
N N

< >
< >∈=

−

∑
 (26) 

Since the dimension-ordered routing needs only one virtual channel to overcome 
deadlock occurrence in the network, by considering V virtual channels per physical 
channel, 1−V  virtual channels are assigned to adaptive routing function. Thus, 

,adaP a e< > can be written as 

( )
1, ,

, ,

1

, v a e
ada v a e V

V

P
P a e P − < >

< >
−

< >= +  
(27) 

and 
&det ,adaP a e< > is equal to  

, ,v a eP < >
. The final two parameters which are skipped in 

both power and latency models are arrival traffic rate on the channel, 
,a eλ< >

, and 

average service time of the channel, 
,a eSer< >

. The rate of messages generated at a 

specific node, s, and destined to another specific node, d, that traverse a specific 
channel ,a e< >  on its minimal path, is calculated as product of the probability that the 

message crosses the given channel, 
( ), ,pass
s dP a e< > , and the probability that the message 

is sent to the node d, and the probability that the generating message is of the desired 
type. We divide the messages into three types. Messages originated from the hot IP, 
messages destined to the hot IP and all the other messages. Thus 

( ){ } ( ) ( ), , , ,
,

1
1 ,

2
Pass

nodes d a e S D
s h d h

P a e
N

λ α λ< > ≠ ≠
= − ⋅ ⋅ < > ⋅

−

( ){ } ( ) ( ), , , ,

1
1 ,

1
Pass

nodes d a e S D
s h

P a e
N

λ α λ< > =
= − ⋅ ⋅ < > ⋅

−

( ){ } ( ), , , , ,Pass
nodes d a e S D

d h
P a eλ α λ< > =

= ⋅ ⋅ < >  

(28) 
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Message arrival rate for a specific channel can be calculated as the aggregate of the 
rates in which each type of the messages generated at the given channel. 

( )
( )

, , , ,
,

a e s d a e
s d G G

λ λ< > < >
∈ ×

= ∑
 

(29) 

Since the message lengths are assumed to be greater than the network diameter, the 
service time of a channel is equal to the average of network latencies of all messages 
crossing the given channel. Therefore, the service time on channel <a, e> can be 
calculated as the average of the 

( ),s dS  of all source and destination nodes that have at 

least one path between each other that traverse channel ,a e< >  as 

( ), , , , ,l a e s d a e
d h

Ser S< > < >
≠

=∑ ,  
( ), , , , ,h a e s d a e

d h

Ser S< > < >
=

=∑  (30) 

Therefore, the mean service time at the channel, considering all types of messages 
with their appropriate weights, can be written as 

( ) ( ), , , , , ,

, , , , ,
, ,

s d a e s d a e
d h d h

a e l a e h a e
a e a e

Ser S S
λ λ

λ λ

< > < >
≠ =

< > < > < >
< > < >

= × + ×
∑ ∑

 

(31) 

4   Analytical Comparison 

In this section, we apply the proposed model to a two-dimensional mesh (Mesh5 × 5) 
to which the tile the hot IP is mapped varies around all possible nodes (quadrant of 
mesh). Figure 3 shows the region where the mapping is done. Note that due to 
the  partial symmetry in the mesh topology, all other nodes are similar to one of the 
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Fig. 2. The message may emerge at each node and channel 
in the shaded area with different probabilities 

Fig. 3. A 5x5 Mesh 
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Fig. 4. Mapping the hot IP to nodes 0, 1, 5, 6, 10, 11, and 12; (left) Model validation; (right) 
Average use of virtual channels on 2-dimensional surface 
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Fig. 4. (continued) 
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nodes considered in the gray sub-mesh. The analytical model is validated through a 
discrete-event simulator that mimics the behavior of both the fully adaptive routing 
and dimension-ordered routing at the flit level in two-dimensional meshes. In each 
simulation experiment, a total number of 100,000 messages were delivered. 
Statistical results gathered for the first 10,000 messages were thrown off to avoid 
distortion due to initial start-up conditions. Numerous scenarios were considered 
and simulated and analyzed but, for the sake of brevity, figure 4 depicts the latency 
results predicted by the model explained in the previous section against those 
provided by the simulator for a 5x5 mesh with message length of 64 flits and 2 
virtual channels per physical channel only. We assume that each generated message 
has a finite probability 0.1 (α = 0.1) of being directed to the hot IP and probability 
0.9 of being directed to the other network nodes.  The horizontal axis in the figures 
shows the traffic generation rate at each node, while the vertical axis shows the 
mean message latency. These figures reveal that the analytical model predicts the 
mean message latency within acceptable accuracy in the steady-state regions. Also 
the traffic rate on the channels in the whole network is presented in figure 4 (right). 
The traffic rate is the average use of virtual channels by the messages and 

nodeλ in 

this case was fixed to 0.0055 in figure 4. 

5   Conclusion 

In this study, we proposed some analytical model that considers inter-relations 
between power consumption and network latency. The important findings of this 
study are as follows: I) The way we modeled the parameters and elements in NoC 
leads the reader to analyzing the effects of these parameters on power and latency of 
message; therefore, making a good view in proposing heuristic algorithms to find the 
best IPs/Cores mapping in NoC. II) As discussed in section 3, the model can be 
extended to deal with the uniform and other non-uniform traffic patterns. Also, the 
model does not depend on any routing algorithms. Therefore, omitting these 
constraints makes the model suitable to be used for any routings, traffic patterns, and 
topologies. III) To our best knowledge, no power model has been reported for NoC 
where the effect of blocking of the messages in the network is considered. This work 
is the first to do so. IV) The final result of the model which predicts the average 
energy consumption per cycle in the whole network is the valuable parameter can be 
used by network designers. 
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Abstract. It becomes crucial to test and verify embedded hardware systems 
precisely and efficiently. For an embedded System-on-a-Chip (SoC) comprised 
of multiple IP cores, various design techniques have been proposed to provide 
diverse test access link configurations. In this paper, a Flag-based Wrapped 
Core Link Controller (FWCLC) is introduced to enable efficient accessibility to 
embedded cores as well as seamless integration of IEEE 1149.1 TAP'd cores 
and IEEE 1500 wrapped cores. Compared with other state-of-the-art techniques, 
our technique requires no modification on each core, less area overhead, and 
provides more diverse link configurations for design-for-debug as well as 
design-for-test. 

Keywords: Embedded System, Boundary Scan, SoC Testing, Test Access 
Mechanism, Wrapper. 

1   Introduction 

Embedded systems are increasingly designed by using System-on-a-Chip which 
embed reusable IP cores such as processors, memories, and peripheral interfaces. 
Today's system on boards become tomorrow's IC's, whereby today's IC's become 
tomorrow's cores. The major bottleneck in SoC design embedding multiple IP cores is 
the testing and debugging, and then, efficient test access architecture for IP cores in 
an SoC has become the key challenge in narrowing the gap between design and 
manufacturing capability. 

Test access architecture for testing and debugging consists of mainly three 
components. Two of them are test access mechanisms (TAMs) and test wrappers, and 
have been proposed as important components of SoC test access architecture [1]–[8], 
[14], [16]–[18]. TAMs include internal scan chains which mainly bring the test 
sequences into embedded cores for internal testing, while test wrappers such as IEEE 
1149.1 and 1500 translate the test sequence into test patterns for either internal testing 
of a target core or external testing of interconnect nets. The third key component is 
the link controller which controls the test access architecture for linkage between 
embedded cores and the external test equipment [9], [10], [12], [13], [19]. The test 
cost, which can be estimated by the memory depth required on the ATE as well as by 
the test application time, is greatly affected by the integration of well designed TAMs, 
test wrappers, and the link controller into the overall design. Therefore, The design of 
efficient test access architectures, which includes the integration of TAMs, test 
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wrappers and the link controller for IEEE 1149.1 TAP'd and 1500 wrapped cores, 
have become significant issues in core test integration [8]–[13], [15], [19]. This paper 
is focused on introducing a new link controller which can be effectively adopted for 
an SoC embedding IP cores with wrappers such as IEEE 1149.1 or 1500. 

When one or more cores have built-in 1149.1-compliant TAPs and are used in an 
1149.1 compliant IC [7], like the TMS437 microcontroller manufactured by TI, a 
hierarchical access of embedded TAP problem arises, since the 1149.1 standard 
provides for only one set of test pins for a 1149.1-compliant IC [13]. The hierarchical 
access covers the access to the embedded cores which are hierarchically embedded at 
the core level as well as embedded in the SoC level. In order to solve the problem in 
accessing multiple cores, several systematic approaches have been proposed [9]-[13], 
[15], [19]. To overcome the deficiency in hierarchical access of  IEEE 1500 cores 
with 1149.1 control, a unified test architecture of enhancing IEEE 1500 Serial 
Interface Layer (SIL) has been proposed [15]. This paper introduces an efficient Flag-
based Wrapped Core Link Controller (FWCLC) which can provide hierarchical 
integration of IEEE 1149.1 and 1500 wrapped cores, completely compatible with the 
standards. 

This paper is organized as follows. Various TAP linking techniques for the 1149.1-
compliant cores are reviewed in section 2, and linking techniques including IEEE 
1500 wrapped cores are described in section 3. A proposed wrapped core link 
controller is described in section 4 and design results are reported in section 5, 
followed by the conclusion in section 6. 

2   Link Controllers for IEEE 1149.1 

IEEE 1149.1 boundary scan is a design for testability technique to simplify the 
application of test patterns at the board or system levels. The standard Test Access 
Port (TAP) includes TDI, TDO, TMS, TCK and optionally TRST [7]. The standard 
includes the boundary scan, bypass or other test data register which are connected to 
the TDI-TDO path upon the instruction decoded by instruction decoder of IEEE 
1149.1. Mandatory instructions include bypass, sample/preload, extest, and other 
optional user defined instructions include runbist, clamp, highz, and idcode. 

Although the IEEE boundary scan was initially intended for board and system level 
testing, recently the SoCs comprised of reusable IP cores are tested and debugged 
through the boundary scan chains [9], [10], [12]-[19]. As a result various methods 
have emerged [9]-[19]. 

Reference [10] introduced the technique that the least significant bits of the SoC 
boundary scan instructions are used to differentiate the SoC TAP from core TAPs. A 
serial connection of 1149.1-compliant embedded cores to the SoC TAP as the test 
data register could potentially make it possible to debug a certain processor core, but 
every core must be in bypass mode except the target one, that is all the cores must be 
orchestrated simultaneously. The main objective of [10]’s approach was to debug a 
certain processor core by disconnecting the SoC TAP and setting all other cores to 
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bypass mode but the one being debugged, which makes the connection between the 
ICBSR and CBSRs untestable. 

In [9] the technique based on the TAP Linking Module (TLM) is presented in order 
to conveniently link the SoC TAP to any subset of embedded core TAPs, but standard 
IEEE 1149.1 boundary scan of both SoC and embedded cores must be slightly 
modified to add extra test logic which may not be allowed for the hard IP cores (DSP, 
CPU etc.). 

The Hierarchical TAP (HTAP) architecture was developed to keep the IEEE 
1149.1 compatibility and scalability [12], [13]. The HTAP architecture requires an 
augmented version of the 1149.1 TAP called a Snoopy TAP (SNTAP) in the top-level 
of the design hierarchy. The HTAP has all the advantages that the TLM has over the 
ad-hoc approaches but unlike the TLM does not need a second TAP controller, which 
leads to some hardware savings. However, this approach has two key weak points: 
one is that entrance to and wake-up from Snoopy-State is not seamless in a point of 
IEEE 1149.1 protocol, and the other is that the interconnects between the SoC and the 
core boundaries are not testable. 

3   Link Controller for IEEE 1149.1 and 1500 Wrapped Cores 

IEEE 1500 is the standard for testing embedded cores while preserving scalability for 
hierarchical test access. IEEE 1500 provides a flexible hardware interface between an 
embedded core and its environment so that predefined test patterns can be efficiently 
delivered to and from the embedded core. The core test wrapper standardized by 
IEEE 1500 has the following features [8]. 

• Provide core test, interconnect test and bypass modes which are a subset of IEEE 
1149.1 modes. 

• Can connect the core boundary chain (wrapper) to any internal scan chain to 
perform internal testing of the cores. 

• The various modes of the core test wrapper are operated by several control signals 
in general generated through SoC TAP controller. 

The IEEE 1500 architecture consists of wrapper register, TAM connection, 
instruction register, and control signals provided externally. The control signals 
include UpdateWR, CaptureWR, ShiftWR, SelectWIR, WRSTN and WRCK which is 
the test clock. 

Like the boundary scan description language (BSDL) for IEEE 1149.x, the core 
test description language (CTL) is defined to transfer the test information from core 
provider to core user. Test-related information includes test methods, test modes, test 
patterns, design-for-test(and debug) information, etc.. A few core link techniques 
have been published for an SoC with IEEE 1149.1 cores [9], [10], [12]-[19]. The 
hierarchical Test Access Mechanism for SoCs with both IEEE 1149.1 and 1500 cores 
[19] was presented to achieve complete compatibility without any additional test pin, 
instead, the IEEE 1149.1 TRST pin is used to change the configuration. However, in 
order to adopt this technique, all the hierarchical cores must possess the optional 
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TRST pin, and by activating the TRST although the configuration mode can be 
changed but the TAP controller is transited to the Test Reset state, thus concurrent 
testing which is very important to reduce testing time of multiple cores is not feasible. 

In this paper a simple Flag-based Wrapped Core Link Controller (WCLC) is 
proposed that can be hierarchically and concurrently applicable to an SoC with both 
IEEE 1149.1 and 1500 wrapped cores without requiring any additional pins and IP 
core modification. 

4   Architecture of Flag-Based Wrapped Core Link Controller 

4.1   Functional and Structural View 

Fig. 1 shows our new test access architecture with FWCLC. In order to provide 
hierarchical test access to embedded cores, our Flag-based Wrapped Core Link 
Controller (FWCLC) in Fig. 1 coordinates the connection between the test bus and 
wrapped cores. 
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Fig. 1. Detailed view of FWCLC 

Observation 1: To test concurrently the SoC including hierarchical cores while 
preserving compatibility with IEEE 1149.1 and 1500 standards, no additional pin is 
allowed to change the configuration mode in choosing the target cores. 

Justification: Only five pins of TDI, TDO, TMS, TCK and TRST are allowed in any 
level of the SoC hierarchy to keep the IEEE 1149.1 standard, hence no extra test pin 
can be adopted. If TRST is chosen to change the configuration mode, the cores tested 
in different mode have to be reset upon activation of TRST making concurrent testing 
unfeasible. 



An Efficient Link Controller for Test Access to IP Core-Based Embedded System Chips 143 

Observation 2: Only by taking a dedicated instruction for hierarchical core test and an 
internal flag register for reconfiguration, can concurrency and compatibility in 
hierarchical core testing be achieved.   

Justification: Since no additional test pin is allowed, an extra instruction must be 
used to get into core testing mode. Without interrupting the cores being tested, if other 
target cores need to be tested, the configuration has to be changed while still 
sustaining the current configuration. Hence, the flag identifying the reconfiguration 
mode is required. The flag register is then set or reset by Update_IR state after shift-
IR of IEEE 1149.1 protocol. 

In Fig. 1 TAP1 for the SoC allows its boundary scan register to access the TAP'd, the 
non-TAP'd, and the IEEE 1500 wrapped cores. TAP2 and TAP3 are associated with 
each IP core to access the corresponding CBSR. However, IEEE 1500 wrapped core4 
is accessed via the IEEE 1500 controller in the FWCLC. The multiple TAPs and 
IEEE 1500 wrappers are connected to 1149.1-compliant SoC test bus through the 
FWCLC. 

Switch module, Link Control Register (LCR) module, LCR Controller (LCR_CTRL) 
module, IEEE 1500 controller module, and Output Logic (OL) constitute the basic 
framework of our test access mechanism. A TCK signal is directly connected to each 
TAP and FWCLC. The key components of this architecture are described as follows: 

 
1) Switch 
The switch is comprised of a crossbar switch used to set the test path, a gating circuit 
to either select or de-select SoC TMS signal and SoC TAP control signals, and a 
circuit to initialize the core TAP without TRST*. The key functions include: 

a) Initialize the embedded cores upon the SoC TAP initialization, and then only the 
SoC TAP is located on the TDI-TDO path. 

b) Based on the Link Control Register (LCR) information, the switch provides the 
embedded core test path from TDI to TDO of the SoC. 

c) When the core test path is reconfigured upon the LCR, current wrappers and 
instructions are guaranteed to keep the current values. To perform the 
concurrent testing with precedence constraints [4], this function is crucial. 

 
2) Link Control Register (LCR) 
The link information among embedded cores including SoC TAP is stored in this 
LCR. In order to change the link, the LCR must be located on the SoC TDI-TDO scan 
path, and the LCR information is changed at Update-DR after Shift-DR state 
according to IEEE 1149.1 protocol. The CoreTest_sig of the LCR indicates whether 
any embedded core is involved or just the TAP1 which is the SoC TAP. The signal 
controls the flag register in the OL block. For example, if any embedded core is not 
selected upon LCR, then the CoreTest_sig is set to ‘0’, telling not in core test mode. 
This condition can occur in the case of power on, power reset, or the start/completion 
of test by a test scenario. 

The LCR is activated when the Select_LCR_sig is ‘1’ which is triggered by the 
flag register, and shifts the link information during Shift-DR state. 
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3) Output Logic (OL) 
Fig. 2 shows the structure of the OL which connects either wrapped core test path or 
LCR to TDO output. Either Switch_out_sig for the wrapped core test path or 
LCR_out_sig for the LCR is connected to TDO. 

Also included is a 1-bit flag register which commands the test controller to change 
the link configuration. This flag register is attached to the last of the instruction 
registers during Shift-IR and Update-IR states in the core test mode which is indicated 
by the CoreTest_sig. Therefore, the value in the register is shifted and updated at 
Shift-IR and Update-IR states, respectively. The value of ‘1’ at this flag register 
indicates that the LCR is on the TDI-TDO path by setting Select_LCR_sig to ‘1’.  

When CoreTest_sig is set to ‘0’, the signal de-activates the flag register by gating 
the control signals for the register, and it is not on the TDI-TDO path. In this case, the 
flag register can be set to ‘1’ by LinkUpdate_sig from the SoC TAP, and this signal is 
triggered by the additional CoreTestMode instruction of the SoC TAP. 

Table 1 shows the TDO output value on the CoreTest_sig, Select_LCR_sig and 
TAP controller states. 

 

4) IEEE 1500 Controller 
An IEEE 1500 controller is shown in detail in Fig. 3 where each output signal used to 
control IEEE 1500 wrapper of core 4 is directly connected to IEEE 1500 Wrapper 
Serial Ports (WSP) except the Wrapper Serial Input (WSI) 4 and Wrapper Serial 
Output (WSO) 4. The IEEE 1500 controller consists of the Wrapper Enable Logic 
(WEL) associated with each IEEE 1500 wrapped core, and a multiplexer(MUX). 

The WEL gates control signals of the SoC TAP and applies them to the WSP 
(other than the WSI and WSO). The MUX is controlled by the Select signal of the 
SoC TAP controller which is the TAP1. In the DR-Scan state, DR control signals are 
connected to the output of IEEE 1500 controller, and in the IR-Scan state, IR control 
signals are connected. 
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Fig. 2. Output Logic (OL) structure 
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Table 1. Output of TDO by key control signals 

Control signal 
CoreTest_sigSelect_LCR_sig

TAP controller states TDO output signal 

0 0 Scan-DR Switch_out_sig 
0 0 Scan-IR Switch_out_sig 
0 0 Other than Scan-DR and Scan-IR HighZ 
0 1 Scan-DR LCR_out_sig 
0 1 Other than Scan-DR HighZ 
1 0 Scan-DR Switch_out_sig 
1 0 Scan-IR Switch_out_sig 
1 0 Other than Scan-DR and Scan-IR HighZ 
1 1 Scan-DR LCR_out_sig 
1 1 Other than Scan-DR HighZ 
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Fig. 3. Detailed view of IEEE 1500 controller 

4.2   Operation and Timing  

Upon power on or test reset, the FWCLC is designed to enable only the SoC TAP by 
setting the leftmost bit of the LCR to ‘1’. Thus, only the SoC TAP is placed on the 
TDI-TDO path, while all wrapped cores are disconnected from the test bus. 

The SoC TAP controller supervising FWCLC is always activated to track the test 
bus status although the controller is disabled under LCR information. 

In this architecture, the key signal of the FWCLC is the Select_LCR_sig triggered 
by the flag register whose value must be provided during Shift-IR state and updated at 
Update-DR state. Upon receipt of the Select_LCR_sig from the flag register, the LCR 
of the FWCLC is connected to TDI-TDO path. Then, the link information regarding 
the TAPed and IEEE 1500 wrapped cores selected is shifted into the LCR through the 
TDI of the SoC. The link configuration of wrapped cores is updated at the Update-DR 
state after new link information is shifted in. 
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The timing diagram which shows the transfer of control from TAP2 to TAP3, is 
illustrated in Fig. 4. The TAP2 initially linked becomes disconnected and the TAP3 
unlinked is getting linked at Update-DR state. FWCLC drives the synchronous 
transition of all wrapped cores, and allows linking/unlinking operations to occur only at 
the “Update-DR” state and all unlinked wrapped cores to enter the “RunTest/Idle” state.  

 

Fig. 4. Sample timing diagram of link change using FWCLC 

5   Design Results for FWCLC 

The key differences between the approaches cited in [9], [10], [12], [13], [19] and our 
approach regarding the FWCLC method are summarized in Table 2. It should be 
noted that TAP_EN and SEL pins are necessary for the [9]’s TLM requiring TAPed 
core modification. The HTAP architecture in [12], [13] also has key deficiencies in 
that entrance to and wake-up from Snoopy-State is not seamless in a point of IEEE 
1149.1 protocl, and the connections among chip and core boundaries can not be 
tested. The TAP controller in the SNTAP is a modified 1149.1-compliant TAP 
controller. In addition to the 16 states necessary to perform all 1149.1-specified 
functions, this controller has an extra set of 16 states designated "Snoopy States" 
which are used to snoop on the test bus of an IC, when appropriate. However, our 
method does not require such complicated extra states, and instead, makes use of the 
1149.1 standard only. Particularly, our architecture can support IEEE 1500 wrapped 
cores as well as 1149.1 cores. To reduce SoC test time with various constraints such 
as available TAM width, test pins and power dissipation [4], the IP cores must be 
dynamically reconfigured without interrupting the current testing and while 
preserving the current status by a core link controller to maximize test concurrency. 
This dynamic link configuration capability is provided by our FWCLC, and the 
effectiveness is demonstrated, experimentally. 

The key link control blocks for each technique are listed in Table 3 along with the 
area overhead estimated. Each design was synthesized by Synopsys Design Compiler 
with TSMC 0.25 CMOS technology, and the gate counts are presented as the number 
of equivalent two-input NAND gates in the last column of Table 3. It can be seen that 
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Table 2. Key differences between prior techniques and our method 

 Link config. 
TAP’d core 

modification 
Chip TAP controller 

modification 
Dynamic link 

config. 
IEEE 1500 

support 

[9] any required required support not support 

[10] serial not required not required not support not support 
[12] among cores not required required support not support 
[13] among cores not required required support not support 
[19] among cores not required not required not support support 

Proposed Any not required not required support support 

Table 3. Estimated area overhead of the prior techniques and our method 

 Key link blocks 
Area estimated  
(NAND gates) 

[9] 
TLM TAP controller, LinkUpdate register, 

Decoder, Shift register 
1104 

[10] Lengthy SoC, Instruction register 
Size of   

the instruction register 

[12] 
16 states machine, Control register, 

Programmable switch 
940 

[19] 
FSM block, Switch block, 

Wrapper control block, Configuration register, 
Boundary Reg. control block 

1200 

Proposed LinkControl register, Switch, Output Logic 908 

FWCLC requires much less area overhead than the [9], [12] and [19]. Although [10] 
requires the least area overhead, diverse and dynamic link configurations are not 
achievable. For these reasons, it is certain that our flag-based link update technique 
provides the most effective and convenient test access solution. 

Our technique has been applied to an SoC in Fig. 5 which includes four IP cores, 
TAP controller and FWCLC. The characteristics of each IP core are described in 
Table 4, where “Required test clocks” indicates the number of test clocks needed to 
test each IP core with the test patterns generated by Synopsys TetraMAX. Scan 
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Fig. 5. Experimental chip 
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Table 4. Characteristics of the IP cores used in the experimental chip 

IP Cores 
 

WDT 
UART 

(BISTed) 
RTC 

(BISTed) 
PIC 

Function 
Watch Dog 

Timer 

Universal 
Asynchronous 

Receiver 
Transmitter 

Real Time Clock 
Peripheral  
Interface 

Controller 

Wrapper IEEE 1500 IEEE 1500 IEEE 1500 JTAG 

Required test 
clocks 

837,480 7,339,976 2,359,260 728,820 

Number of 
scan chains 

10 - - 10 

Table 5. Effectiveness of concurrent testing for the different link configurations 

IP Cores 
 

WDT 
UART 
(BIST) 

RTC 
(BIST) 

PIC 
Total 

test clocks 

Case1 1C 2C 3C 4C 11,265,536 
Case2 1C 2 2 1C 8,177,406 

2C 1 1 2C 

Test 
sequence 

cases Case3 
 3 3  

7,339,976 

insertion for two IP cores, WDT and PIC, was done by Synopsys DFT compiler, and 
BIST logic was implanted in UART and RTC core by Mentor Graphics LBISTArchitect. 
In this experiment, two 10-bit parallel TAM buses were used as test bus in top level 
for TAM-In and TAM-Out. 

To show the effectiveness of dynamic link configuration supported by the 
proposed technique, test patterns were applied sequentially and concurrently for 
different link configurations, and the results are described in Table 5. The total test 
time is the summation of the required test clocks for each core and the time taken to 
reconfigure the links. The number in each IP core denotes the order of reconfigurat-
ions, and the suffix ‘C’ implies that the corresponding core is on the test link path 
until the completion of the testing. For example, in case2 both WDT and PIC cores 
are initially chosen for internal testing, and after the completion of this testing, the 
BISTs for UART and RTC are activated. In case3, at the beginning, the BIST 
operations for UART and RTC cores are activated, and then the test path is 
reconfigured to choose WDT and PIC cores for internal testing while BISTs for 
UART and RTC are running excluded from the test path. After the completion of the 
internal testing for WDT and PIC cores, the link is reconfigured to include the UART 
and RTC on the test path, and then BIST results are scanned out after completion. In 
the sequel, the shortest testing time was achievable by concurrently testing the cores 
with our FWCLC. 

To test an SoC embedding hierarchical cores which embed  other cores in hierarchi-
cally lower level, the appropriate test access architecture must be provided. The 
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following procedures show that our FWCLC can be efficiently used to test an SoC 
such as Fig. 6, which includes a hierarchical core (HCORE).  

a) The LCR in chip level FWCLC is located on the TDI-TDO path. 
b) The LCR is assigned with “0001” to include the HCORE on the test path.  
c) The LCR in FWCLC of the HCORE is located on the TDI-TDO path. 
d) The LCR is assigned with “001” to include the PIC core on the test path.  
e) Finally the PIC core embedded in the HCORE can be accessed through the SoC 

level test pins. 

In summary, the FWCLCs at the SoC and HCORE levels can provide diverse 
dynamic link configurations, concurrent testing and hierarchical test access for IP 
debugging as well as testing. 

 

ICBSR

1500

Wrapped

WDT

CBSR

1500

Wrapped

UART

CBSR

BIST

FWCLCTAP

TAM-In

TAM-Out

TRST

TCK

TMS

TDI

TDO

CBSR

FWCLC

JTAG’d
PIC

CBSR

1500

Wrapped

RTC

CBSR

BIST TAP

1500 Wrapped HCORE

ICBSR

1500

Wrapped

WDT

CBSR

1500

Wrapped

WDT

CBSR

1500

Wrapped

UART

CBSR

BIST

FWCLCTAP

TAM-In

TAM-Out

TRST

TCK

TMS

TDI

TDO

CBSR

FWCLC

JTAG’d
PIC

CBSR

JTAG’d
PIC

CBSR

1500

Wrapped

RTC

CBSR

BIST

1500

Wrapped

RTC

CBSR

BIST TAP

1500 Wrapped HCORE

 

Fig. 6. Effectiveness of concurrent testing for the different link configurations 

6   Conclusion 

In order to verify and test embedded system chips with multiple IP cores, an efficient 
Flag-based Wrapped Core Link Controller (FWCLC) is introduced in this paper. An 
SoC embedding IEEE 1149.1 and 1500 wrapped cores can be tested concurrently and 
hierarchically with our FWCLC, which also allows diverse interconnect testing. 
Various test scheduling techniques requiring concurrent test for the optimization of 
test power, application time, and test pins can be efficiently implemented with this 
FWCLC. Therefore, complicated embedded system can be precisely and economi-
cally tested with our scheme. 
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Abstract. As wireless techniques are developing, a mobile node has an
ability to move everywhere. Some nodes become a group and transfer to
other coverage together. Therefore, a mobile node has to identify where
it is and establish the communication session rapidly, although it changes
its point of attachment. We suggest Information-based mechanism and
simulate it by NS-2. The result shows suggested mechanism reduces the
handoff latency and end-to-end delay.

Keywords: Nested Mobile Networks, RS and RA Format, Information-
Based Connection.

1 Introduction

As wireless techniques are developing, a mobile node has the ability to move
everywhere. Therefore, a mobile node has to identify where it is and establish
the communication session rapidly, although it changes its point of attachment.
As a mobile node moves several times, the handoff latency and end-to-end delay
get longer.

A mobile router (MR) or a mobile network node (MNN) changes it point of
attachment, but there is a number of nodes behind the mobile router. The ulti-
mate objective of a network mobility solution is to allow all nodes in the mobile
network to be reachable via their permanent IP addresses, as well as maintain
ongoing sessions when the mobile router changes its point of attachment within
the Internet. Network mobility support should allow a mobile node or a mobile
network to visit another mobile network. The mobile network is operated by a
basic specification to support network mobility called Network Mobility (NEMO)
Basic Support [1]. Furthermore, when a host has several IPv6 addresses to choose
between, it is said multihomed [2]. This happens for instance when a mobile host
or a mobile router has several interfaces simultaneously connected to the fixed
network or when a mobile network has multiple MRs. However so many tun-
nels are used for supporting the sessions when a MR or MNN moves to other
coverage. This is called pinball problem.

Some studies for avoiding the problem and for maintaining the session be-
tween a mobile network node (MNN) and a correspondent node (CM) have been
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researched. Most solutions proposed to enhance handoff in mobile IP environ-
ments by performing a pre-registratin of the MN with the new access router (AR)
and avoid packet loss. A handoff scheme using bi-directional edge tunneling [3]
is made even with the nested mobile networks. To avoid this problem, Mobile
Ad-hoc Networks Extension [4] is proposed. However, we reduce the number of
tunnels into one tunnel and make the MR or MNN choose the effective point of
attachment among possible points of attachement.

In case of the nested NEMO, the more a mobile network node (MNN) moves
to another area several times continually, the heavier the overhead and delay,
Round Trip Time (RTT) and disconnection are. These have an effect on real time
multimedia communication between a correspondent node (CN) and a MNN.
Therefore, this paper proposes information procedure for guaranteeing QoS and
reducing disconnection which occurs in nested mobile network.

This paper is organized as follows. Section 2 represents some essential technol-
ogy required at suggested information-based connection mechanism. In section
3, we describe some problems in nested NEMO and propose the scheme of hand-
off delay by applying new mechanism. Section 4 shows the information-based
connection mechanism. In section 5, we evaluate the suggested new mechanism
accomplishing simulation by using NS-2. Lastly in section 6, we give some re-
marks with result of simulation.

2 Related Works

In this section, we explain underlying techniques of current issued network mo-
bility and routing mechanism, and describe how we make use of them.

2.1 Network Mobility

Network mobility support is concerned with managing the mobility of an en-
tire network. This arises when a router connecting a network to the Internet
dynamically changes its point of attachment to the fixed infrastructure, thereby
causing the reachability of the entire network to be changed in relation to the
fixed Internet topology. Such a network is referred to as a mobile network.

Each AR has several Mobile Routers (MR) and Mobile Network Nodes
(MNN). Those MRs and MNNs get into a group under the AR to the Inter-
net and make one or more level of hops from the AR. All MRs and MNNs can
freely move in their own direction. Therefore, the connectivity and reachability
should be ensured in Network Mobility [5].

Once the binding process finishes, a bi-directional tunnel is established be-
tween the HA and the MR. The tunnel end points are the Mobile Routers Care-
of Address and the HAs address. If a packet with a source address belonging to
the Mobile Network Prefix is received from the Mobile Network, the MR returns
the packet to the HA through this tunnel.
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2.2 Nested Network Mobility

An entire network which moves as a unit dynamically changes its point of at-
tachment to the Internet and thus its reachability in the topology. The mobile
network is composed of one or more IP-subnets and is connected to the global
Internet via one or more Mobile Routers (MR). The internal configuration of
the mobile network is assumed to be relatively stable with respect to the [5].

Nested mobility occurs when there is more than one level of mobility. That
is to say, a mobile network acts as an access network and allows visiting nodes
to attach to it. This situation is called the nested NEMO. There are two cases
of nested mobility. First, the attaching node is a single visiting mobile node
(VMN). For instance, when a passenger carrying a mobile phone gets Internet
access from the public access network deployed on a bus. Second, the attaching
node is a MR with nodes behind a mobile.

Fig. 1. A sub-NEMO moves into new coverage under another AR in Nested Network
Mobility

Figure 1 shows that sub-NEMO which is a mobile network migrates into new
coverage under neighboring AR. The sub-NEMO consists of several nodes and
the all nodes in the sub-NEMO moves altogether. After the movement of the
sub-NEMO, the procedure for receiving packets from the CN is very similar
to that in section 2.1. However the MR should work for transmitting packets
towards the nodes under itself by mapping old addresses to new addresses.

A mobile network is said to be nested when a mobile network (sub-NEMO) is
attached to a larger mobile network (parent-NEMO). The aggregated hierarchy
of mobile networks becomes a single nested mobile network. The root-NEMO
is the mobile network at the top of the hierarchy connecting the aggregated
nested mobile networks to the Internet. The parent-NEMO is the upstream
mobile network providing Internet access to another mobile network further
down the hierarchy. The sub-NEMO is the downstream mobile network attached
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to another mobile network up in the hierarchy. It becomes subservient of the
parent-NEMO. The sub-NEMO is getting Internet access through the parent-
NEMO and does not provide Internet access to the parent-NEMO. The root-MR
is the MR(s) of the root-NEMO used to connect the nested mobile network to
the fixed Internet. This is referred to as Top-Level Mobile Router (TMLR). The
parent-MR is the MR(s) of the parent-NEMO. The sub-MR is the MR(s) of the
sub-NEMO which is connected to a parent-NEMO [6][7].

2.3 Information Based Routing

Information based routing is with Beacon Routing[8] for a basis in order to
transmit Smart Packet to destination with a high degree of efficiency. Beacons
are peculiar active nodes to broadcast routing information for specific Smart
Packets and Beacons also are operated as traditional router. On the average,
active nodes are connected to one Beacon or more and Active Packets should be
transmitted to target host based on the methods within the Smart Packets. With
the intention of deciding routing path, Beacon broadcasts specific information
and then sets up new link to a Beacon holding target host address.

In information based routing, active node can select adjacent beacon based
on keyword to be transmitted to the beacon. Accordingly, this means beacon
connected to active node is needless to be fixed and active node can change a
beacon to be connected depending on a Smart Packet it receives. Since rout-
ing path which that active packets are going through is restricted within spe-
cific limit routing paths, it is so efficient that we can deliver our packets more
selectively[9][10].

3 Route Optimization Based on Information

The Nested NEMO has a multi-level hierarchical architecture and this results in
handoff latency and end-to-end delay by pinball problem. In other words, several
tunnels are used in nested NEMO. Therefore, it is very important to reduce the
number of tunnels that are formed when a MNN changes its point of attachment
to the Internet.

First of all, BU message includes label option field and all MNN send BU
message that contains a label to upper MRs.

3.1 Communication Between Different Parent MRs

Figure 2 shows the movement of a MNN to neighboring Sub-MRs. The movement
is divided into movement1 and movement2. The MNN migrates between different
Parent MRs in movement1. And in movement2 the MNN moves within the same
Parent MR. The HA1, HA2, HA3 and HA4 are the HAs of MNN, Sub-MR1, MR
and P-MR respectively.

First, we consider the movement1 case. When the MNN detects that the MNN
moves into new coverage under other Sub-MR1, the MNN creates a label and
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insert the label into the label option of a BU message. And then the MNN
sends the BU message to upper Sub-MR1. After the Sub-MR1 receives the BU
message, the Sub-MR1 makes binding cache. In binding cache of the Sub-MR1, a
row of table consists of label, home address and source address which means next
hop. The label is used to make a link between the Sub-MR1 and the MNN. Thus,
whenever the Sub-MR1 needs to forwards the packet destined to the MNN, the
Sub-MR1 looks up at the binding cache based on the label for the MNN and
sends the packets to recorded source address in the binding cache, because the
link from the Sub-MR1 to the MNN was created for the MNN beforehand. And
then the Sub-MR1 changes the source address with its own source address in the
BU message. Furthermore, the Sub-MR1 does not need to encapsulate packets
any longer. When the Sub-MR1 sends packets to the Internet, the Parent MR
directly send to a HA1 of the MNN instead of a HA2 of Sub-MR1. That is
because the label instead of the home address is used within a nested NEMO.

Fig. 2. The Movement of a MNN in Network Mobility

The Sub-MR1 gives the BU message to the upper MR and the binding cache
is made in the MR. As a result, the MR makes a link from itself to the Sub-MR1
based on the label. Whenever the MR gets packets destined to the MNN, the
MR sends packets to the Sub-MR1 according to the label of the MNN, home
address of the MNN and source address of the Sub-MR1 which is used for next
hop. And then the MR changes the source address with its own source address
in the BU message. The MR does not encapsulate packets and send to a HA3
of the MR in the same way as the Sub-MR1.

Finally the P-MR receives the BU message and begins to make a binding
cache that consists of the label, home address and source address. The label is
used within the nested NEMO. The home address is the address of a MNN. This
address is used to find HA1 of the MNN and creates a tunnel between the HA1
of the MNN and the P-MR. Besides, when the P-MR receives packets from the
HA1, the P-MR looks up the next hop in binding cache. And then the P-MR
sends packets to the Sub-MR1 because the link from the P-MR to the Sub-MR1
was created for the MNN in advance.
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Consequently, all MRs except for P-MR does not need to capsulate packets
because of the label usage, the only one tunnel is set up by P-MR. All MRs
notice whether themselves are the Parent MR or not by means of the depth of
RS and RA message that are proposed in section 3. This proposed procedure
resolves the pinball problem that the nested NEMO suffer from.

3.2 Communication Within the Same Parent MR

We consider the movement2 case in Figure 2. The links through P-MR, MR,
Sub-MR1 and MNN are made for packets destined to MNN using the label.
In movement2, the MNN changes its point of attachment to Sub-MR2. Hence,
the MNN need to make new link in order to receive packets at new location.
The MNN sends a BU message with the label to the Sub-MR2 after giving the
RS message and getting the RA message. The Sub-MR2 establishes a link from
itself to the MNN by inserting new row with the Label, home address and source
address in the binding cache after receiving the BU message from the MNN. And
then the Sub-MR2 forwards the BU Message to the MR. Most of all, the MR
examines whether the same label and home address exist in its own binding
cache. If the same label exists in the binding cache, the MR swaps the existed
home address and source address for new home address and source address in
the same row. Thus new link from the MR to the Sub-MR2 is created and old
link from the MR to the Sub-MR1 is broken for packets destined to the MNN. As
a result of this procedure, the MR begins to forward all packets to the Sub-MR2
instead of the Sub-MR1 without the pinball problem.

3.3 Communication Through the Internet

The NEMO basic support has pinball problem using several IP-in-IP encapsu-
lation. This causes end-to-end delay and high handoff latency. Therefore, the
MNN can not receive packets from a CN continuously.

In figure 2, only the P-MR establishes a tunnel between itself and a HA1
of the MNN. In order to perform this procedure the P-MR searches for the
home address of the MNN in the BU message from the MNN. And then the
P-MR makes a tunnel with HA1 using the home address and its own address.
Hence, the encapsulation is performed once and only one tunnel is set up. In the
NEMO case, four tunnels are created. When HA1 sends packets to the MNN,
the route is HA1, HA2, HA3, HA4, P-MR, MR, Sub-MR2, MNN. Namely the
pinball problem occurs. However, in the case of proposed method, the route is
HA1, P-MR, MR, Sub-MR2, MNN. As compared to legacy method, the route
is shorter by resolving the pinball problem.

4 Connection Mechanism with Information

As wireless techniques are developing, a mobile node has an ability to move
everywhere. An increasing techniques support wireless and mobile movement.
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While a MNN communicates with a CN, the MNN may migrate into coverage
of a neighbor AR. In this situation, the MNN has to search for a possible channel
to the neighbor AR and a MR and a HA configure a binding cache in itself,
respectively. Moreover, as long as a MNN changes its attachment point, the
communication session must be not disconnected between a MNN and a CN.
In case of nested Network Mobility, a MNN can connect to some attachment
points, i.e, a MR, a sub-MR, a Local Fixed Node (LFN) and a Local Mobile
Node (LMN) in a neighbor AR which the MNN heads for. Therefore the MNN
need to select the best attachment point for effective traffic.

Fig. 3. A MNN attaches to sub-Network of neighbor AR in Nested NEMO

Figure 3 represents that a MNN changes into anther coverage of a neighbor
AR. When the MNN which is located on the left AR migrates to the coverage of a
right AR, the MNN should maintain current communication session between the
MNN and the CN. Therefore, the MNN attempts to connect to some attachment
nodes which supply mobile nodes with connectivity. Above figure shows three
possible attachment nodes, that is to say, a MR, a LFN, a LMN. In other words,
when a MNN change its point of attachment into the coverage of another AR,
the MNN may receive RA signals from several attachment nodes. Thus the MNN
has to choose which point the MNN attaches to, and check which point is more
efficient in the aspect of processing faculty.

4.1 Router Advertisement and Router Solicitation

The router solicitation message[11] is used to ask a router advertisement message
by a MNN. When the MNN needs to find out the prefix of neighbor attachment
nodes address, the MNN broadcasts a RS message. If a new attachment node
within a neighbor AR receives the RS message, this attachment node broadcasts
the RA messages at once.

A MNN can receive several RA messages from a variety of attachment nodes
in a neighbor AR under the nested NEMO. Thus the MNN has to choose the
most efficient one of some attachment nodes. Therefore the MNN requests the



158 S.-H. Ryu and D.-K. Baik

information about attachment nodes which broadcast the RA message. However
legacy mechanism does not support this information. Consequently we suggest
a new RS format as subsequent figure.

Fig. 4. Router Solicitation Format and Router Advertisement Format

The suggested RS format of figure 4 is equal extremely to existing router
solicitation format. But a new bit W is inserted in the field of reserved bytes
and information such as the label, the depth and the capacity are generated in
the field of options. This bit W is used to request the information about the
attachment node by a MNN. If the MNN receives only one RA message, the
MNN sets this bit W to 0 and sends a RS message. If the MNN receives one or
more RA messages from different attachment nodes, the MNN sets bit W to 1
and generates a keyword and then forwards the RS messages. This bit indicates
query for the information of attachment node such the label with keyword, as
the depth from parent-MR and the capacity about whether the attachment node
can accept communication with the MNN or not.

Figure 4 shows a bit called W within Reserved bytes in second row. This
bit W is used to indicate whether information about the attachment point is
contained or not. The information of the attachment node includes the label,
the depth and the capacity. First of all, the label designates the keyword to
use for communication between a MNN and the attachment node. Second, the
depth means the deepness from the parent-MR to the current attachment point
in nested NEMO. Finally the capacity stands for the processing faculty of the
attachment node. That is about whether a MR can accept the connection with
a new MNN or not.

This information which includes the label, the depth and the capacity is in-
serted in the field of options. An attachment node sets the bit W to 1 only if the
attachment node receives a request message from a MNN. Otherwise, the bit W
is set to 0. If a MR gets a RS message from a MNN, the MR sets the bit W to
1 and adds the information about the label, the depth and the capacity of itself
within options field. In addition, the bit W of the RS message is set to 1 and
the RS message contains the label, the MR stores the label in its binding cache
and then replies to the MNN with the RA message which has flag W.
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4.2 Connection to New Attachment Point

A MNN moves into the coverage of a neighbor AR on the right side in figure
3. As soon as the MNN gets RA message, the MNN yields CoA and sets the
bit W to 1 and inserts a keyword within options field. The MNN multicasts RS
messages. A left MR, a LFN and a right MR, a sub-MR, a LFN, a LMN receive
the RS message according to figure 3. After these attachment nodes which have
a shot at being a new connection point for the MNN receive the RA message
with the bit W that is set to 1 and the label, these nodes figure out the label
with a keyword received from the MNN, the depth from parent-MR, the and
the capacity for processing faculty respectively. And then those nodes transit
the RA message to the MNN by modifying the value of bit W into 1. Since the
MNN gets the RA messages from several attachment nodes, the MNN decides
which attachment node is more efficient and the best node by checking out the
label, the depth and the capacity of respective attachment nodes.

The four RA messages may be arrived at the MNN. If a right MR is parent-
MR, the depth of the parent MR has 0. The depth of sub-MR, LFN and LMN
are 1, 2, 3 in turn. And if the parent-MR can accommodate a new MNN for
connection to outer Internet, the capacity of the parent-MR is 1. Unless the
parent-MR serves any other node, the capacity is set to 0.

The MNN compares all information from the advertisement messages and
then attempts to select a relevant node according to the depth. First of all, the
MNN puts the low value of the depth to the higher priority. If the depth values of
two nodes are 1 and 2, the MNN tries to investigate whether the capacity value
of the node which has depth 1 is 1 or not. If the capacity is 1, the MNN connects
to the attachment node with depth 1 and capacity 1, because the attachment
node with depth 1 is located at the place which is closer to a parent-MR than
the attachment node with depth 2.

If the capacity of node with depth1 is set to 0, the node can not accept a new
MNN any more. Therefore, the MNN attempts to check the capacity value of
another node with depth 2. If the capacity value is 1, a MNN connects to the
attachment node with depth 1 and capacity 1. Thus the MNN searches through
the neighbor area for a probable attachment node in this way.

5 Simulation and Evaluation

In this section, by using a network simulator[12][13], we generate the scenario
with 100 MNNs which move together or alone and we simulate an existing sim-
ple handoff in nested NEMO and the proposed information-based connection
procedure. The simulation environment is FreeBSD 4.7 and NS-2 2.1b6.

5.1 Throughput

The graph of figure 5 shows the result of packet throughput between the nested
NEMO of the legacy mechanism and the information-based connection of the
proposed mechanism during simulation. When a MNN moves to the coverage of
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neighbor attachment node, the MNN sends or receives the packets to or from a
CN fast if the MNN selects the most effective attachment node. Figure 5 shows
the proposed mechanism is better than the legacy mechanism.

Fig. 5. Comparison result of packet throughput

In case of the legacy mechanism, the MNN chooses anyone of the attachment
nodes. This legacy mechanism causes the heavy traffic and the unnecessary sig-
nals over the network. If the MNN changes its point of attachment and the upper
node is full of many packets, the MNN dons not communicate with the CN well.

The result of Figure 5 shows that our proposed mechanism is of benefit to
process many packets on real time during people walk around street. It is because
the MNN seeks for the most effective attachment node when the MNN moves.

In addition, the MNN uses the information within the RS and RA message
in case of the proposed mechanism. This information is activated with flag W
in the messages and contains the label, the depth and the capacity. The label is
used to search the effective attachment node fast, and the depth is used to check
the attachment node close to parent-MR. The nearest node to the parent-MR
has a chance to send packets very fast. The capacity is used to find that the
MNN has the processing faculty enough to process the packets.

5.2 Traffic

We analyze the network traffic generated by applications. Traffic occurs whenever
intermediate nodes process the packets which become an exponential growth.
Figure 6 shows that the traffic of the proposed mechanism is decreased less than
the traffic of legacy mechanism. The reason is that network overhead is reduced
by decreasing the messages both from MNNs to HA and from MNNs to CNs.
Our proposed mechanism enables the attachment nodes to process the packets
faster. Therefore, the proposed mechanism optimizes the transmission path and
reduces the delay time using the Information-based connection algorithm and
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Fig. 6. Comparison result of traffic

the traffic distribution algorithm after a MNN migrates to switching area and
an attachment node can not process the packets in time.

Moreover, the all of the attachment nodes perform the traffic distribution
algorithm whenever the attachment nodes are filled with a lot of packets and
begin to discard some packets, which are out of the processing faculty of the
attachment node. Thus, all of MNNs search for the more effective attachment
node and connect to that attachment node. In the end, the network overload and
traffic are decreased and the nested NEMO enable the MNNs to be satisfied with
communication. The transmission cost for packet is reduced from 1.2 to 0.9 as
mentioned in section 5 and the transmission cost is applied to the traffic result of
figure 6. For packet throughput, the proposed mechanism processes much more
145.4906 Byte/ms (17.39 percent). For throughput rate, the proposed mecha-
nism improves 15.11 percent as decreasing at the rate of 0.1373. Our proposed
mechanism is more effective in the two aspects of the throughput. For traffic, the
proposed mechanism reduces 0.347684 Byte/ms (14.15 percent) on the average.
For data transfer delay, 1.753958 Byte/ms (14.85 percent) is decreased.

6 Conclusion

In this paper, we suggest the information-based connection algorithm. The MNN
checks out which node is the most effective attachment node of the probable
nodes which reply with the RA message with flag W according to the priority
of the depth, the capacity and the label. The MNN selects one attachment node
with the lower depth and the capacity value which is set to 1. And then the MNN
stores the label in binding cache. This value is used to search for new attach-
ment node when the upper MR does not process the packet transmission because
the MR gets a lot of packets out of its processing faculty. Therefore, with the
ongoing communication session remained, the MNN can move freely using the
information-based connection algorithm and the traffic distribution algorithm.
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The simulation results of new algorithm which is proposed in this paper show
that it improves the packet throughput and the packet rate, and it also reduces
the application traffic avoiding the data transfer delay which is caused by the
heavy attachment nodes.
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Abstract. Recently, energy dissipation by microprocessors is getting
larger, which leads to a serious problem in terms of allowable temper-
ature and performance improvement for future microprocessors. Cache
memory is effective in bridging a growing speed gap between a processor
and relatively slow external main memory, and has increased in its size.
However, energy dissipation in the cache memory will approach or ex-
ceed 50% of the increasing total dissipation by processors. An important
point to note is that, in the near future, static (leakage) energy will dom-
inate the total energy consumption in deep sub-micron processes. In this
paper, we propose cache memory architecture, especially for on-chip mul-
tiprocessors, that achieves efficient reduction of leakage energy in cache
memories by exploiting gated-Vdd control and software self-invalidation.
In the simulation, our technique reduced 46.5% of leakage energy at max-
imum, and 23.4% on average, in the execution of SPLASH-2 programs.

1 Introduction

In recent years, energy consumption of a microprocessor is getting larger due
to increasing transistor counts according to Moore’s Law and acceleration of
operation clock frequency. The high energy consumption makes a lifetime of in-
creasingly common battery-powered devices short. In addition, the increase of
energy dissipation raises the temperature of LSIs and consequently violates oper-
ational conditions or becomes an obstacle to progress of microprocessor’s running
clock frequency. Therefore, reduction of energy consumption is indispensable to
performance improvement of future microprocessors.

On the other hand, large-scale and sophisticated software is spreading and
working set size in applications is getting larger. Therefore, high performance
processing requires a large amount of cache memory in order to bridge a speed
gap between a processor and external memory. Consequently, energy dissipation
in cache memory exceeds 50% of the total consumption by a processor [1]. The
energy reduction in cache memories is essential and some solution to the problem
must be provided for future microprocessor architecture, especially in terms of
leakage energy that would be more serious in future sub-micron processes.
� Presently, the author is with Semiconductor Company, Matsushita Electric Indus-
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In recent years, on-chip multiprocessors are becoming popular since they have
the advantage of high performance. In this paper, we propose cache memory
architecture for on-chip multiprocessors, that exploits gated-Vdd transistors and
explicit gated-Vdd control by some kind of load and store instructions, and
achieves substantial reduction of static energy consumption. In addition, we
show the effectiveness by cycle-based simulations using SPLASH-2 benchmarks.

Section 2 describes several related works on leakage energy reduction in cache
memories and on self-invalidation techniques. In Section 3, we propose the cache
memory architecture that enables software self-invalidation and reduces leakage
energy. Section 4 shows effects of the technique we propose with simulation
results, and Section 5 concludes this paper.

2 Related Work

There are several architectural techniques proposed for leakage energy reduction
in cache memories. Dynamically ResIzable instruction cache (DRI i-cache) re-
duces energy dissipation by dynamically downsizing effective caching areas [2].
Whether downsizing or upsizing is performed depends on the number of cache
misses that occurred in some interval. When the miss count is fewer than a bound
given in advance, the cache is downsized, and vice versa. The area that is not
to be accessed is turned off by controlling gated-Vdd transistors and does not
consume static energy after that [3]. This method focuses only on an instruction
cache and the cache is divided into only two parts, active and sleeping areas.

There are other methods that are based on fine-grain gated-Vdd control.
Cache decay is an energy-reduction scheme that controls gated-Vdd per cache
block [4]. A block is in a dead-time state when it is in the interval between
the last access to the block and replacement. Blocks in the dead-time state are
turned off by gated-Vdd control and then any static energy is not wasted for the
blocks. However, it is impossible for a hardware mechanism to decide exactly
whether a block is in dead-time or not. In their hardware organization, the de-
cision depends on a counter value for each block. The counter counts cycles or
ticks during which the block is not accessed. When the counter gets saturated,
the corresponding block is regarded as having entered dead-time. This mecha-
nism requires extra hardware for the counters and cannot eliminate misjudgment
completely due to various access patterns in applications that include both short
and long access intervals.

Cache blocks that are turned off cannot preserve data values in the methods
mentioned above. Therefore, reaccessing such blocks causes a cache miss and in-
volves a miss penalty. On the other hand, there are state-preserving techniques,
ABC-MT-CMOS (Auto-Backgate-Controlled Multi-Threshold CMOS) [5] and
drowsy cache [6]. ABC-MT-CMOS is a technique where threshold voltages are
dynamically manipulated and leakage energy is reduced. Memory cells can retain
values even in a sleep mode. However, reaccessing the sleep cells requires wait-
ing for the cells to wake up. MT-CMOS requires complex circuitry and there-
fore tends to increase the hardware size. Drowsy cache prepares two different
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supply-voltage modes, high-power and low-power modes, instead of turning off.
Cache blocks in the low-power mode cannot be read or written. Although the
amount of energy reduction is smaller than the gated-Vdd control, blocks even in
the low-power mode can preserve data values. Each block periodically falls into
the low-power mode, and is woken up to the high-power mode when the block is
reaccessed. The penalty for waking up a low-powered block is much smaller than
that in the gated-Vdd controlled caches. This mechanism expects the character-
istics in programs that there are a limited number of memory blocks that are
frequently accessed in some short period, and effectively reduces leakage energy.

The defects of the gated-Vdd control are an additional cache miss penalty
caused by data disappearance and increase of dynamic energy consumption for
accessing the next level memory hierarchy on the misses. On the other hand,
those of state preserving ones such as drowsy caches are relatively large addi-
tional hardware and lower efficiency of leakage energy reduction since any mem-
ory cells always keep some voltage. Our method proposed in the next section
aims at reducing extra cache misses while achieving as much energy reduction
as gated-Vdd control, by using software self-invalidation. Self-invalidation was
originally a technique for mitigating overheads of cache coherence management
in distributed shared memory [7,8]. We apply the concept of self-invalidation
to energy reduction in cache memory. The self-invalidation methods proposed
in [7,8] were controlled fully by hardware. Therefore, they are not appropriate
energy-reduction mechanisms since they require special hardware, version num-
ber directory or signature tables, that consumes dynamic energy by itself. Then
we propose a software self-invalidation technique in this paper.

3 Software Self-invalidation

This section describes a self-invalidation technique by software. The technique
is achieved by last-touch memory reference instructions and cache hardware
mechanisms invoked by the instructions.

3.1 Last-Touch Memory Reference Instructions

For efficiency of software self-invalidation, we introduce the instructions, last-
touch load/store, execution of which invalidates addressed cache blocks after
accessing them. There are two types of condition for invalidation as follows.

– A block is invalidated at the same time as it is accessed.
– A word is marked when it is accessed. The block is invalidated when all

words in it get marked.

We call the former type of instructions last-touch-block load/store (ltb ld/st),
and the latter last-touch-word load/store (ltw ld/st). When write-back policy is
employed and a block that is designated to be invalidated is of a modified state,
the invalidation is performed after write-back operation or insertion into a write
buffer if it exists.
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For example, load/store instructions that access each address only once before
it is invalidated by other processor caches can be replaced by the last-touch
load/store instructions. Similarly, ones that access each address only once in
a generation (between block filling and replacement) can be replaced by the
last-touch load/store instructions.

Fig. 1 shows examples of application of the last-touch memory reference in-
structions. In the left figure, the variable “Globalid” is updated in the critical
section and then the corresponding cache block would be invalidated by a subse-
quent processor that enters the critical section. Therefore, the last-touch-block
store can be applied to the update of the variable provided that other variables
in the same block are not referenced after the unlock. On the other hand, in the
right figure, sequential references to the array “src” and “dest” in the loop are
basically last access to each word provided that the loop count is large enough to
replace read blocks. Therefore, by applying the last-touch-word load instructions
to the array references, self-invalidation can be performed without extra cache
misses. In this example, when the array consists of 4-byte word elements and
the block size is 16 bytes, self-invalidation is performed once every two iterations
(references to four elements).

.

.

.

        LOCK ( Global lock );
            MyNum = Globalid;
            Globalid += 1;
        UNLOCK ( Globallock );

.

.

.

.

.

.

        for ( i = 0; i < n1; i++ ) {
            dest[2*i] = src[2*i];
            dest[2*i+1] = src[2*i+1];
        }

.

.

.

(a) (b)

Fig. 1. Application of last-touch memory reference instructions

3.2 Hardware Mechanisms

It is necessary to give a small modification to conventional cache memory struc-
ture to reduce energy dissipation by using the last-touch instructions.

Last-touch flag bits are a part of cache tag information and indicate which
word in the cache block has been accessed by the last-touch load or store in-
struction. Fig. 2 shows the cache memory structure including the last-touch
flag bits, when the block size is 16 bytes and a word size is 4 bytes. A single
last-touch flag bit corresponds to a word in the block. When a last-touch-word
load/store instruction is executed, the corresponding flag bit is cleared. On the
other hand, when a last-touch-block load/store instruction is executed, all flag
bits are cleared (as depicted in the top set in the figure). Then, a block is inval-
idated when all the flag bits are cleared.

A valid bit of the whole cache block can be generated by a logical disjunction
(OR) of the last-touch flag bits. In other words, last-touch flag bits are regarded
as a valid bit of each word. The last-touch flag bits are additional hardware
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Fig. 2. Cache memory structure

to conventional cache tag information. We choose flag bits per word, not per
byte, considering that the additional hardware amounts should be small and
that applications often process data on a word basis.

We assume that the gated-Vdd (or gated-Vss) is implemented by following
the technique proposed by Yang, et al. [2]. This is a wide NMOS dual-Vt gated-
Vdd with a charge pump and has about 5% of area overheads. The gated-Vdd
transistor is inserted between ground and SRAM cells (virtual ground). When
the gated-Vdd transistor is turned off, the leakage energy is virtually eliminated.
Fig. 3 is a conceptual diagram of a cache block. The address tag and data parts
of the block are connected with one or more gated-Vdd transistors. The gated-
Vdd transistors are controlled by the valid bit. When the valid bit is one, the
gated-Vdd is turned on, otherwise, turned off and leakage energy in the address
tag and data areas is eliminated. (When the valid bit is prepared separately from
last-touch flag bits, the last-touch flag bits can be turned off as well).

After a block is turned off, it takes a certain delay to wake the block up
again. This wakeup latency depends on the LSI process used and the number of

Valid
Last-touch
flag bits Address tag, etc. Data

GND

Gated-Vdd

Virtual ground

Fig. 3. Gated-Vdd control
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bits that a single gated-Vdd transistor takes charge of. Short wakeup latency is
desirable from a performance point of view [9]. Kaxiras, et al. were optimistic
about the wakeup latency, since they estimated that the latency is hidden by
an L1 cache miss penalty [4]. Similarly, several researches adopted relatively
short time, a few cycles, as the wakeup latency [10][11]. We follow the same
(optimistic) assumption in this paper.

4 Evaluation

4.1 Environment

We developed a scalar processor simulator that executes the SPARC version
9 instruction set [12]. The simulator executes an instruction per cycle (several
instructions such as multiplication and division take three or more cycles) and
outputs the total execution cycles and other informations; the number of cache
misses, write buffer stall cycles, consumed energy, etc. The simulator has two
target processors for multiprocessor configuration. Each processor has L1 in-
struction/data split caches that follow write-back policy and a write buffer. The
L1 caches are connected by a shared bus and managed based on a write inval-
idate protocol. The L2 cache is shared by all processors. The configurations of
the caches and write buffer are shown in Table 1.

Table 1. Cache configuration

32KB, 16-byte block
L1 I-&D-cache 4-way set associative (LRU)

1-cycle latency on hit

L2 unified cache
Infinite size, 16-byte block
10-cycle latency on hit

Write buffer
Infinite size
1-cycle latency for insertion

In the simulation, the simulator calculated leakage energy in the L1 caches by
using the following formula.

Leak energy = Active cells × Active leakage per cell × Active cycles
+ Standby cells × Standby leakage per cell × Standby cycles

Active leakage is for a turned-on cell and standby leakage is for a turned-off cell.
The parameter values that were shown in [3] were applied to the above formula
(1740 nJ/s for an active cell and 53 nJ/s for a standby cell, under 0.18μm).

For evaluation, we used five kernel programs in the SPLASH-2 suite [13]. The
input data sizes or input file in the five programs are shown in Table 2.
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Table 2. Input data sizes or input file for five programs

Program Input data size / input file

FFT 65,536 complex
LU contig 256x256 matrix
LU non-contig 256x256 matrix
RADIX 262,144 keys
CHOLESKY wr10.O

4.2 Application of Last-Touch Instructions

In this evaluation, we applied the last-touch load/store instructions by referring
execution traces. This enables optimal application of the last-touch instructions
and is helpful for finding the maximum effects of the proposed method, although
it might be impractical in actual software execution environment.

The programs were simulated in advance in order to generate traces of memory
accesses. After that, we updated the program (assembly) codes by replacing
load/store instructions with last-touch ones, based on the traces. There are two
types of traces, “address-based trace” and “PC-based trace”. The traces were
generated as follows.

1. Whenever load/store instructions are executed, the instruction address (pro-
gram counter) is recorded in the entry for the referenced address in the
address-based trace. When the corresponding entry is not found in the trace,
a new entry is generated and initialized to the instruction address.

2. Whenever load/store instructions are executed, the number of times of ac-
cessing the address by the instruction is incremented in the PC-based trace.
When the corresponding entry is not found in the trace, a new entry is
generated and initialized to 1.

3. As for receipt of an invalidate request, the addresses concerned that are
referenced after the invalidation are regarded as different from those before
the invalidation.

The procedure for applying the last-touch instructions is as follows.

1. Instructions that correspond to PCs in the address-based trace are “weak
candidates” for the last-touch instructions.

2. The PC-based trace is scanned with a weak candidate as a key. If it is
found that all addresses referenced by the candidate were accessed once, the
candidate becomes a “strong candidate” for the last-touch instructions.

3. The address-based trace is re-scanned with all the addresses that the strong
candidate referenced. If the PC that the address in the trace indicates differs
from the PC of the strong candidate, the candidate is removed from the
candidate group.

4. The remaining strong candidate instructions are replaced by a last-touch-
block instruction if they referenced no more than one address per memory
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block, otherwise, by a last-touch-word instruction. (We did not apply the
last-touch instruction when candidates were an instruction for smaller data
than a word).

Fig. 4 shows an example of the procedure mentioned above. The “Address”
column in the address-based trace indicates addresses that were referenced by
load or store instructions in the program execution. The “PC” column indicates
the program counter value of a load or store instruction that accessed the cor-
responding address last. On the other hand, “N” column in the PC-based trace
shows the number of times of accesses to the corresponding address by the PC
instruction.

 Address   PC

   . . .

20065f70 11138

   . . .

20065f78 11a8c

   . . .

20067fe8 11080

   . . .

20067ff8 11334

   . . .

  PC  Address N

   . . .

11080 20067fe8 1

11080 20067fec 1

11080 20067ff8 1

11080 20067ff4 1

   . . .

11138 20060200 2

11138 20060204 2

11138 20065f70 1

11138 20060200 1

   . . .

11334 20067ff8 63

11334 20067ffc 63

   . . .

11a8c 20065f70 1

11a8c 20065f74 1

11a8c 20065f78 1

11a8c 20065f7c 1

   . . .

 Address   PC

   . . .

20065f70 11138

20065f74 11138

20065f78 11a8c

20065f7c 11a8c

   . . .

20067fe8 11080

20067fec 11080

20067ff0 11080

20067ff4 11080

20067ff8 11334

20067ffc 11334

   . . .

OK

OK

OK

OK

Address-based trace Address-based tracePC-based trace

NG

NG

NG

Fig. 4. Decision to apply last-touch instructions

In the figure, first, the instruction whose PC value is “11138” is chosen as
a weak candidate for a last-touch instruction. The PC-based trace shows that
the instruction referenced the address “20060200” twice. Therefore, the instruc-
tion cannot be a strong candidate. The next weak candidate whose PC value is
“11a8c” is searched in the PC-based trace. This instruction becomes a strong
candidate since all of the referenced addresses have 1 for N. Then, the address-
based trace is re-scanned for the address “20065f70” as a key. In the address-
based trace, the address has “11138” as the last-touch PC, which does not equal
to “11a8c”, and therefore, this instruction is removed from the strong candi-
date group. Next, the instruction whose PC is “11080” is a weak candidate and
searched in the PC-based trace. It is found that this instruction accessed each
address once. Therefore, this instruction becomes a strong candidate. Then, the
address-based trace tells that, for all the accessed addresses, the last-touch PC
is “11080”. Consequently, this instruction can be replaced by a last-touch in-
struction. The last-touch word load/store instruction is used in this case, since
the distance between the accessed addresses is shorter than the block size. For
example, “20067fe8” and “20067fec” reside in the same memory block. Finally,
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the PC “11334” has multiple accesses to an address in the PC-based trace, and
therefore, cannot be a candidate.

For the last-touch instructions, we exploited load/store instructions from/to
an alternate space that are implementation-dependent instructions in the
SPARC architecture. These instructions can specify an address space identifier
(ASI). We used a discrete ASI value for each of last-touch-block and last-touch-
word instructions.

4.3 Results

The results of leakage energy consumption in the L1 cache memories are shown
in Fig. 5. In the figure, the “without GV” indicates the execution without gated-
Vdd control or self-invalidation. Therefore, this execution does not lead to any
energy reduction. The “with GV” means the execution with gated-Vdd control
for blocks that are naturally invalidated by invalidation messages between pro-
cessor caches, not by self-invalidation. The “with GV&SI” is the execution with
gated-Vdd control for blocks that are invalidated by invalidation messages and
by self-invalidation operation. All results are normalized to the results of the
“without GV” execution.

Fig. 5. Leakage energy

The “with GV” execution reduced 15.5% of leakage energy in LU cont, 33.0%
in LU non-cont, and 2.5% in RADIX. For FFT and CHOLESKY, the execution
could not reduce leakage energy. (0.6% and 0.08%, respectively.) Table 3 shows
the number of invalidation by invalidate messages. The figure 5 and table 3 mean
that the amount of leakage reduction by “with GV” was roughly proportional
to the number of invalidation by invalidate messages.
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Table 3. The number of invalidation

Program
# of invalidation by
invalidate messages

FFT 39
LU contig 130,720
LU non-contig 232,019
RADIX 812
CHOLESKY 106

Table 4. The number of self-invalidation

Program
# of self-invalidation # of last-touch-word

Last-touch-block Last-touch-word instructions

FFT 36 66,044 264,190
LU contig 18 82,150 396,571
LU non-contig 18 157,156 908,555
RADIX 25 272,420 1,179,675
CHOLESKY 9 14,839 71,630

Table 5. Execution cycles

Program without GV exec. with GV&SI exec.

FFT 118,641,649 118,641,584
LU contig 100,084,316 100,084,040
LU non-contig 98,001,681 97,693,117
RADIX 122,541,690 122,418,679
CHOLESKY 39,266,223 39,258,305

Table 6. The number of cache misses

Program without GV exec. with GV&SI exec. Reduction rate (%)

FFT 118,641,649 118,641,584 0.0012
LU contig 100,084,316 100,084,040 0.021
LU non-contig 98,001,681 97,693,117 3.0
RADIX 122,541,690 122,418,679 4.7
CHOLESKY 39,266,223 39,258,305 0.32

For all of the five programs, the proposed method (“with GV&SI”) reduced
more leakage energy than the simple “with GV” execution; 2.5% of leakage
energy in FFT, 20.6% in LU cont, 46.3% in LU non-cont, 46.5% in RADIX,
and 1.0% in CHOLESKY. Table 4 shows the number of self-invalidation by
last-touch-block and that by last-touch-word instructions, and the number of
last-touch-word instructions executed. Roughly, one self-invalidation operation
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is performed every four executions of the last-touch-word instructions. The figure
5 and table 4 show that a large amount of leakage energy was reduced by “with
GV&SI” for LU non-cont and RADIX, which included many self-invalidations.

Table 5 shows the number of execution cycles for “without GV” execution
and “with GV&SI” execution. For all the programs, the execution “with GV&SI”
decreased the execution cycles, although the difference was small. This is because
the number of cache misses was decreased. Table 6 shows the number of cache
misses that occurred in each program execution. The caches basically employed
LRU replacement policy where a block that was least recently used was replaced.
On replacement, an invalid block entry, if it existed, was selected for an entry that
was filled with a missing block. Therefore, the self-invalidation facilitates optimal
replacement decision by invalidating blocks that are already in dead-time. On
the other hand, without self-invalidation, the simple LRU might replace blocks
that are still in live-time and lead to cache misses later. This is why the execution
time “with GV&SI” was shorter than that “without GV”.

5 Conclusion

In this paper, we proposed a method for reducing leakage energy dissipation
by gated-Vdd control and software self-invalidation. This method can be imple-
mented by introducing load/store instructions that explicitly indicate that the
accesses are last-touch to the addresses, and by a small amount of additional
hardware. By using trace-based translation into codes that included the last-
touch instructions, our technique achieved substantial leakage energy reduction
by 23.4% on average, and by 46.5% at best, for the SPLASH-2 kernel programs,
while 10.4% on average and 33.0% at best by the execution with only gated-
Vdd control for naturally invalidated blocks. In addition, it was found that the
execution time was shorter than the execution without self-invalidation, since
the self-invalidation increased the number of invalid blocks and decreased the
number of cache misses, as a result.

The evaluation in this paper used codes that were generated by translation
based on execution traces, which brought optimal application of last-touch in-
structions, but would not be practical in actual software execution. In the future,
we will explore other methods of automatic code generation. For example, the
literature [14] showed that cache misses could be decreased by compiler opti-
mization that made load and store instructions have information about temporal
and spatial locality between instructions. We have prospects of applying similar
compiling techniques for leakage energy reduction.
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Abstract. Many years of CMOS technology scaling have resulted in
increased power densities and higher core temperatures. Power and tem-
perature concerns are now considered to be a primary challenge for
continued scaling and long-term processor reliability. While solutions
for low-power and low-temperature circuits and microarchitectures have
been studied for many years, temperature-awareness at the computa-
tional cluster level is a relatively new problem. To address this problem,
we introduce a temperature-aware task scheduler based on task tem-
perature profiling. We study the task characteristics and temperature
profiles for a subset of SPEC’2K benchmarks. We exploit these profiles
and suggest several scheduling algorithms aimed at achieving lower clus-
ter temperature. Our findings show a clear trade-off between the overall
queue servicing time and the cluster peak temperature. Whether the
temperature reductions achieved are worth the extra delay is left to the
designer/user to decide based on the case by case performance restric-
tions and temperature limitations.

1 Introduction

In recent years, the issues of power dissipation and energy consumption have
come to the forefront of the minds of system designers [1] [2]. One specific area
where this issue is relevant is in the realm of computational clusters [3]. These
large systems often feature hundreds of servers and processors. Exploiting highly
integrated high power density servers and processors in such systems has resulted
in new thermal challenges. In fact, under new semiconductor technologies power
density of the microprocessor core has exceeded 200W/cm2. Such high power
densities can result in high temperatures which in turn can cause transient faults
or permanent failures. Reducing the heat and lowering the cluster temperature is
therefore a vital and important challenge. To address this challenge, two different
approaches may be considered: First, we can develop more effective and often
expensive ventilation and cooling systems to remove more heat at a higher rate.
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Second, we can develop new design techniques at several levels to reduce the
production of the excess heat.

As effective cooling mechanisms become more expensive, it is important that
designers develop temperature reduction techniques at different levels includ-
ing scheduling. This work aims at exploring such solutions. We introduce the
Profile-based Temperature-aware Scheduler, or PTS, to address this problem at
the scheduler level. PTS relies on identifying and using processor-task combina-
tions resulting in better temperature conditions in the computational cluster.

In particular, we make the following contributions:

– First, we study task temperature profiles. A task temperature profile indi-
cates the amount by which a given task will raise the temperature of a host
processor. We use our findings to differentiate between hot and cold tasks.

– Second, we use task temperature profiles of a subset of the SPEC’2K bench-
marks and show that early knowledge of such profiles can be used to produce
a temperature-aware schedule reducing the cluster peak temperature.

The rest of the paper is organized as follows. In section 2 we present task
temperature profiling. In section 3 we present and evaluate our scheduling poli-
cies. In section 4 we discuss some related work. In section 5 we offer concluding
remarks.

2 Task Temperature Profiling

In this study, a task temperature profile is a time series measure of the amount
by which a task will raise the temperature of a host processor. Our observations
have shown that not all tasks generate the same amount of heat on a given
processor. This could be explained by the task’s behaviour including the time
it spends performing integer or floating point calculations, reading and writing
to memory, or waiting for asynchronous events. For example, a processor bound
task can generate more heat compared to an I/O bound task.

Based on how a task impacts processor temperature, we can observe a spec-
trum of tasks ranging from hot, or high-temperature, tasks to cold, or low-
temperature, tasks.

Our goal is to reduce the cluster peak temperature by assigning hot tasks to
cold processors. To achieve this, a temperature-efficient schedule should exploit
the variance in the cooling ability of the processors in a cluster. We have ob-
served this variance is related to the physical proximity of a processor relative
to a cooling vent, and is indicated by the fan-input temperature of the chassis
housing the processor. We therefore classify processors based on their fan-input
temperatures into groups, or processor classes. For example, the 168 processors
in a typical rack may be classified into six processor classes, one for each of the
rack-mounted chassis1.
1 In a typical computational cluster, the chassis closest to the floor vents will have the

lowest fan-input temperature, and thus the best cooling ability.
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In order to measure the task temperature profiles and classify the proces-
sors, we developed a tool which monitors several temperature metrics for a task
executing on a blade in an IBM BladeCenter. Each blade contains two Intel
Xeon processors and with 2 gigabytes of memory and runs Red Hat Enterprise
Linux AS 3. The measurements are performed using the on-chassis and on-board
thermal sensors present on the IBM BladeCenter chasses and blades. A monitor-
ing daemon periodically polls the BladeCenter management interface using the
Simple Network Management Protocol (SNMP). The measured metrics include
the processor core temperatures of the both processors in a blade, the chassis
fan-input temperature, the temperature of the management console located at
the rear of the chassis, and the chassis blower speeds measured as of percentage
relative to maximum blower RPM. To avoid interference from background ap-
plications, both processors in a blade are exclusively reserved for the duration
of the tests.

We generated task temperature profiles (shown in Figure 1) for a subset of
the SPEC’2K benchmarks. Note that a single script executing each benchmark
in succession is used to ensure the execution environment is identical for each
benchmark. Prior to the execution of each benchmark, the processor is idled
for 300 s to allow the system to return to its idle temperature. While these plots
represent the profiles attained with a single execution of the benchmarks, further
experiments on other processors demonstrated similar profiles.

In Figure 1 we see that longer benchmarks (e.g., mcf and swim) show higher
peak temperatures. Accordingly, tasks with shorter runtimes (e.g., crafty and
gzip) cause less heat and therefore lower peak temperatures. Wupwise has
plateaued at between 20 ◦C and 25 ◦C, which is a lower peak compared to mcf
and swim. It is notable that some of the tasks (e.g., crafty, gzip, and vortex ) ap-
pear not to have reached a steady-state temperature – it is reasonable to expect
that had those benchmarks continued executing for longer, their temperatures
would have continued to rise. While noting this situation, we have chosen not to
increase their execution times in this study because we are interested in varied
profiles, including those that have and do not have a steady state. However, it is
clear that further tests of processor, I/O, and memory bound tasks are needed
to explore the full spectrum of temperature profiles.

If we assume that our selection of SPEC’2K benchmarks represents a set of
tasks queued at a computational cluster, then their temperature profiles demon-
strate that a computational cluster will have a spectrum of tasks ranging from
hot to cold. The hot tasks are those having the highest peak temperature, while
the cold tasks are those having the lowest peak temperature. We exploit this
spectrum of task profiles to come up with a schedule which minimizes cluster
peak temperature.

3 Temperature-Aware Scheduling

Our goal is to decrease the cluster peak temperature by distributing tasks
amongst the processors so that hot tasks are assigned to processors with the
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Fig. 1. Task temperature profiles for the SPEC’2K benchmarks (a) crafty, (b) gzip, (c)
mcf, (d) swim, (e) vortex, and (f) wupwise

best cooling ability. Our scheduling techniques rely on the assumption that the
task temperature profiles are relatively invariant between subsequent executions
of similar tasks. We assume that there exists a mechanism that can recognize the
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similarity of tasks by comparing task metadata including the submitting user,
the task name, and invocation arguments. When a submitted task is recognized
by this mechanism, a previously measured profile is used to schedule the task.
When a new or unrecognized task is submitted to the scheduler, its metadata
and temperature profile are recorded for subsequent executions of the task. Ad-
ditionally, we simplify the environment by assuming that task preemption (and
subsequent migration) at the batch scheduler level is disallowed2. All processors
are assumed to be equal in performance.

3.1 A Profile-Based Temperature-Aware Scheduler

A simple computational cluster scheduler, shown in Figure 2, features a single
queue which allocates jobs to all processors. Since there is no notion of temper-
ature awareness, hot tasks may be assigned to the hottest processor, resulting
in a high peak cluster temperature. The PTS scheduler, shown schematically
in Figure 3, divides the processors into processor classes based on their cool-
ing ability as described by their fan-input temperatures. The processors in each
processor class are managed by a first-come-first-served task queue specific to
the processor class. A task director assigns each task to a processor class queue
by inspecting the temperature profiles and sorting the tasks in the global queue
by their peak temperature. The task director allocates the tasks in the sorted
global queue by assigning an equal number of tasks to each processor class queue
starting with the coolest processor class. In general, this results in the hot tasks
being assigned to the coolest processors and the cold tasks being assigned to the
hottest processors.

Fig. 2. Schematic of a simple scheduler having a single queue which assigns tasks to
any processor in the cluster

2 By assuming an absence of task preemption, we not only simplify the problem for
simulation, but also allow the provided solution to be applicable to task sets in
which the majority of tasks do not support checkpointability (which is common
in our experience). A derivative adaptive scheduling strategy that re-evaluates and
reallocates jobs is clearly possible in environments supporting preemption.
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Fig. 3. Schematic of the PTS scheduler, featuring a director which sorts tasks in the
global queue into sub-queues ranging from cold to hot. Each of the sub-queues assigns
tasks to a processor in its associated processor class.
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Fig. 4. Schematic of queue-processor relationship in the PTS-FM scheduler, which
allows tasks to favourably migrate into colder idle queues

Because the queues in Figure 3 will not necessarily empty at the same rate,
the division of tasks equally into separate queues may result in an increase in
the global queue-servicing-time. For example, there may be a number of tasks
waiting to be executed on the hottest processors, while some colder processors
are idle because their corresponding queues are empty. Recognizing that cold
tasks may be assigned to any of the processor classes, we can allow these tasks
to favourably migrate into colder queues. Namely, in the case that a queue Q is
empty, we allow a colder task to migrate into Q (where “colder” implies that the
processor class associated with Q has a lower fan-input temperature than that
of the task’s original queue). This technique, designated PTS with Favourable
Migration (PTS-FM), is shown in Figure 4.

To further increase processor utilization, the scheduler can be configured to
allow the thermally unfavourable migration of tasks to a tunable number (n) of
hotter idle queues. Shown in Figure 5, the PTS with Unfavourable Migration
(PTS-UMn) strategy realizes a trade-off between an increase in the peak cluster
temperature and a decrease in the queue servicing time. The dotted lines in
Figure 5 represent the allocation of tasks to thermally unfavourable processor
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Fig. 5. Schematic of queue-processor relationship in the PTS-UMn scheduler, which
allows tasks to unfavourably migrate into a tunable number (n) of hotter idle queues,
in addition to the favourable migration into colder idle queues. PTS-UM1 is shown.

classes. The shown PTS-UM1 strategy allows tasks to unfavourably migrate
by only one processor class. By increasing the allowed degree of unfavourable
migrations, a further decrease in execution time will be realized along with a
corresponding increase in the peak temperature. In the extreme case, where all
of the queues can allocate tasks to all of the processor classes, the scheduler
becomes a simple first-come-first-served (FCFS) scheduler.

For each scheduling strategy we measure the peak processor temperature as
well as the overall queue servicing time (the time required to execute all tasks in
a given queue). In all cases we compare our results with a baseline policy where
the FCFS algorithm services the global queue in the order that tasks have arrived
(referred to as the FCFS6 policy). Additionally, we compare the PTS strategies
to a simple FCFS-based power saving strategy, where the hottest processors are
simply turned off. In the results below, these are referred to as FCFS5 through
FCFS1, where the subscript represents the number of available processors.

It should be noted that in the following simulations we assume that the direc-
tor has proceeded through a training period and all task temperature profiles are
known. However, in practise, when the director receives a new, unrecognized, task,
a conservative strategy could be followed while its temperature profile is recorded.
Specifically, a conservative policy would specify that new tasks should be allocated
only to the coldest processor class. This ensures that the peak cluster temperature
will not be negatively affected by the execution of a hot task on a hot processor,
but possibly increases the time that the task would have to wait in the queue. By
employing the favourable migration strategy, this overhead may be decreased by
executing the new task earlier on one of the marginally hotter processors.

3.2 Simulation Framework

In order to evaluate the performance of the presented scheduling algorithms, we
have developed a cluster simulator within the SimGrid3 framework [10]. To sim-
3 SimGrid provides a framework for task scheduler simulations. Tasks are characterized

by a cost (the run-time) and processors are weighted with a relative performance.
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plify the simulation, we model a simple six-processor cluster, with each processor
representing a blade chassis in a typical six-chassis IBM BladeCenter. Each pro-
cessor has an associated fan-input temperature; the fan-input temperatures vary
linearly from 18.6 ◦C to 23.8 ◦C (corresponding to the temperatures measured
for a six-chassis BladeCenter). Note that the maximum steady-state operating
temperature of modern microprocessors is typically around 60 ◦C.

3.3 Results and Discussion

Figure 6 presents the total execution time and peak temperature results of the
scheduler simulations having a global queue length of 6000 tasks (1000 instances
of each of the six profiled SPEC’2K benchmarks). As expected, the FCFS6 strat-
egy has the fastest queue execution time of 288852 s, which represents nearly
100% processor utilization, yet also results in the highest peak temperature
(48.0 ◦C). The effect of turning off hot processors is shown in FCFS5 through
FCFS1. In these results we see that the execution time increases proportionally
to the number of processors turned off. Further, the peak temperatures decrease
as the hotter processors are turned off.

By incorporating temperature-awareness into the scheduler, PTS results in
the lowest temperature (42.8 ◦C, which corresponds to the ideal placement of the
workload on the processors) but increases execution time to 712000 s, indicating
that a number of processors were idle for a large portion of time. By allowing
favourable migration, the PTS-FM strategy maintains the optimal temperature,
but compared to PTS improves the execution time to 564616 s.

Finally, the strategies denoted by PTS-UM1 through PTS-UM5 demonstrate
that by taking a more conservative approach, we can allow for faster execution
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time and (b) cluster peak temperature
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times at the expense of higher temperatures. When we compare the execution
times of FCFSn and PTS-UMn strategies that have similar peak temperatures,
the PTS-UMn method performs better. For example, both PTS-UM3 and FCFS4

provide a decrease in peak temperature of approximately 2 ◦C. However, PTS-
UM3 achieves this at a slight cost in execution time in comparison to the 100000 s
penalty created by FCFS4.

It is important to note that the numerical results shown here are highly de-
pendent on the cluster configuration and task profiles used. For example, the
overall peak temperature reduction from 48.0 ◦C to 42.8 ◦C corresponds to the
best possible placement with this set of tasks and processors. When used in en-
vironments with more diverse task temperature profiles, the PTS strategies are
expected to achieve more dramatic temperature reductions.

As presented, the PTS schedulers can be used to decrease the cluster peak
temperature. In cases of uncompromised temperature performance, system de-
signers are encouraged to use the PTS-FM strategy, as it realizes the optimal
temperature while minimizing the possible execution time (i.e. any decrease in
the execution time would have required an increase in the peak temperature).
In cases where the system designer is satisfied with a sub-optimal peak tem-
perature, one of the PTS-UMn strategies can be used to improve execution
time. The PTS-UMn strategy thus provides a mechanism for system designers
to tune the time/temperature performance trade-off according to institutional
priorities.

4 Related Work

Temperature-aware task scheduling for the computational cluster is a relatively
new field of study. Bianchini and Rajamony presented a review of the energy and
power management issues in computational clusters [3]. Much of the initial work
in this area has been performed by Hewlett Packard ([4]-[7]). For example, in
[6] Moore et al. present algorithms that leverage a thermodynamic formulation
of steady-state hot- and cold-spots to achieve up to a factor of two reduction in
cooling costs.

Patel et al. have presented a workload placement strategy for global compu-
tational Grids in which computational facilities are assigned energy-efficiency
coefficients and workloads are allocated to the cluster having the best energy
characteristics [8]. Weissel and Bellosa have developed OS-level power and ther-
mal management methods that can be used to improve the thermal characteris-
tics of the data center [9].

A recent study by Kurson et al. at IBM T. J. Watson Research Center inves-
tigated the decrease in on-chip temperatures seen while using thermally-aware
thread scheduling [12]. Their MinTemp scheduling policy effectively lowers on-
chip temperature by selecting the thread which has the lowest temperature for
the current cycle’s hottest thermally critical block.
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In our work, we study task temperature profiles and exploit them to develop
a temperature-aware data center task scheduler. This approach operates at the
macroscopic system level to discover thermally beneficial workload placements
within the data center.

5 Conclusion

We introduced temperature-aware scheduling policies for computational clus-
ters. We used a task’s temperature profile to quantify a task’s heat producing
capacity and to differentiate between cold and hot tasks. Our policies use dif-
ferent approaches to trade queue servicing time for lower peak temperatures.
With the cluster configuration and temperature profiles we used, we conclude
that a relatively balanced scheduling policy can effectively reduce cluster peak
temperature at the expense of an increase in the queue servicing time.

In the future we plan to improve this work by evaluating the presented strate-
gies using a more diverse set of tasks. Additionally, we will introduce the notion
of task temperature profiling into the knapsack-based scheduler [11] in order to
determine the potential for temperature-awareness in the presence of complex
Quality-of-Service policies.
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Abstract. In this paper, a runtime performance projection model for dynamic 
power management is proposed. The model is built as a first-order linear 
equation using a linear regression model. It could be used to estimate 
performance impact from different p-states (voltage-frequency pairs). Workload 
behavior is monitored dynamically for a program region of 100M instructions 
using hardware performance monitoring counters (PMCs), and performance for 
the next region is estimated using the proposed model. For each 100M-
instructions interval, the performance of all processor p-states is estimated and 
the lowest frequency is selected within specified performance constraints. The 
selected frequency is set with a low-overhead DVFS-based (dynamic voltage-
frequency scaling) p-state changing mechanism for the next program region. 
We evaluate the performance degradation and the amount of energy saving of 
our dynamic power management scheme using the proposed projection model 
for SPEC CPU2000 benchmark on a Pentium M platform. We measure the 
execution time and energy consumption for 4 specified constraints – 10%, 20%, 
40%, 80%, on the maximum allowed performance degradation. The result 
shows that our dynamic management scheme saves energy consumption by 3%, 
18%, 38% and 48% with a performance degradation of 3%, 19%, 45% and 79% 
under 10%,20%,40% and 80% constraints, respectively.  

Keywords: Dynamic Power Management, Dynamic Voltage-Frequency Scaling, 
Performance Monitoring. 

1   Introduction 

Power-aware computing has become a critical component of computer system design. 
In high-performance systems, thermal dissipation has always been a major challenge. 
Also, in mobile and embedded systems, energy efficiency is critical to extend battery 
life. Although hardware design has a direct impact on the system’s power consumption, 
application workload is also an important contributor to power consumption. Therefore, 
dynamic power management considering application workload is critical to an efficient 
power management of a computer system [5][7][11][15]. 
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Current power-aware microprocessors provide multiple operating frequency-
voltage pairs for dynamic power management using dynamic voltage and frequency 
scaling (DVFS) techniques. DVFS can trade off system performance with power 
consumption. Processors that support DVFS have to balance the achieved energy 
savings with a pre-determined limit of performance impact on applications. Advanced 
Configuration and Power Interface (ACPI) is one of industrial standards that define 
active (p-states) and standby power management for the processors [17]. 

In general, the processor's power consumption is greatly dependent on its executing 
workload. During a program execution, performance and power consumption can 
vary widely according to its program behavior. Such workload characteristics can be 
exploited for power management. When a processor is idle waiting for its memory 
accesses, power consumption can be reduced by scaling down processor frequency 
and voltage without a significant performance loss. If we are able to find the slack 
points in a program region dynamically, power management decisions can be made 
with the help of an accessing model that estimates their effects on performance and 
power savings. 

In this paper, a runtime performance projection model for dynamic power 
management is proposed. The model is used to estimate the performance impact of 
different p-states (voltage-frequency pairs). Workload behavior such as CPI (average 
cycles per instruction) and the number of memory accesses are monitored 
dynamically for a program region using hardware performance monitoring counters 
(PMCs). Performance for the next region is estimated using the proposed performance 
projection model with the information collected from PMCs. Performance of all 
processor p-states is estimated and the lowest frequency is selected within the 
specified performance constraints. The selected frequency is set with a low-overhead 
DVFS-based p-state change mechanism for the next program region. 

We build a linear regression model that relates processor performance to two 
architectural parameters on a real Pentium-M processor. The proposed performance 
estimation model is a first-order linear equation that predicts performance impact on 
CPI by a given p-state using monitored program activities such as CPI and the 
number of memory accesses. We evaluate the performance degradation and energy 
saving using the proposed projection model for SPEC CPU2000 benchmark on a 
Pentium M platform. We measure the execution time and energy consumption under 
4 pre-determined constraints – 10%, 20%, 40%, 80%, that specify maximum 
performance degradation allowed. The results show that our dynamic management 
scheme could save energy consumption by 3%, 18%, 38% and 48% with a 
performance degradation of 3%, 19%, 45% and 79%, under 10%,20%,40% and 80% 
constraints, respectively. 

2   Related Work 

There have been many studies that investigate power and energy models for power 
management using DVFS. Among them, Contreras et al. develop a linear power 
estimation model to estimate run-time CPU and memory power consumption of the 
Intel PXA255 processor using hardware performance counters. They derive coefficients 
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of the equation by minimizing the difference between estimated power consumption and 
actual measured power consumption using linear algebra [2]. 

Wu et al. propose an analytic DVFS decision model to determine new p-states in a 
dynamic compilation environment. They develop an equation to select a p-state using 
CPU execution slack due to asynchronous memory accesses [15]. Isci et al. propose a 
runtime phase predictor, called GPHT predictor. It monitors workload behavior for 
dynamic power management on Pentium-M processor [7]. After every 100M 
microoperations, they predict a new p-state based on Wu’s DVFS decision model and 
apply a new DVFS setting.  

Rajamani et al. developed two models based on performance counter events such 
as decoded instructions per cycle and data cache miss to decide a p-state for power 
management [11]. Their performance estimation model applies performance 
projection across all p-states and the p-state with the lowest frequency that meets the 
specified requirement is selected for next interval.  

The power management scheme of Rajamani et al. is the closest to ours. However, 
their performance model uses both linear and non-linear equations, and they divide 
the workload into CPU-bound and memory-bound. Their sampling interval is 10ms. 
Our model is a linear model derived from a regression analysis on different 
performance parameters. We use a fixed instruction sampling interval that is less 
sensitive to clock frequency change. Previous research has shown that program 
phases can alter the timing and values of observed metrics [7]. Therefore, using a 
fixed instruction interval can eliminate the effect of timing variations. 

3   Runtime Performance Projection Model 

3.1   Workload Behavior 

Many studies on program behavior show that programs exhibit repetitive execution 
phases, and their future behavior could be predicted by their monitored past behavior 
[6]. Figure 1 shows an example of program phase change for the SPEC CPU2000 
benchmark mcf. All results are obtained using PMCs on Pentium-M processor (Model 
730) in laptop computer. The Pentium M processor we experimented has 4 different 
DVFS-based ACPI-defined p-states (voltage-frequency pairs). Table 1 shows the four 
p-states of Pentium-M 730 model used in this study.  

Table 1. Frequency and voltage pairs of Pentium-M (Model 730) 
 

Frequency Supply Voltage 

1.6 GHz 
1.33 GHz 
1.07 GHz 
0.8 GHz 

1.308 V 
1.212 V 

1.1 V 
0.988 V 



 Runtime Performance Projection Model for Dynamic Power Management 189 

 

(a) Performance Trace 
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(b) Memory access trace 

Fig. 1. Performance and memory access traces for the SPEC2000 benchmark mcf 

 
In Figure 1 (a), the y-axis is cycles per instruction (CPI) measured for every 100M 

instructions during the program execution. Figure 1 (b) shows the degree of memory 
accesses, MemInst. It is defined as the ratio between the memory bus transactions to 
the number of instructions retired. From the figure, the program has many repetitive 
phases, and its performance has a strong correlation to memory accesses. Figure 2 
shows normalized performance and energy consumption across four p-states for mcf. 
Energy consumption is estimated using power equation described in section 5. All 
values are normalized toward those obtained using 1.6 GHz. For mcf, the performance 
has a strong impact on energy consumption across all p-states.   

Considering the above workload behavior, we use a linear equation to model 
program performance for each p-state. Its coefficients will be obtained by a regression 
model detailed in the next section. 

            
fff MemInstCPICPI 210' βββ ++=                                    (1)  
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Fig. 2. Normalized performance and energy consumption across four p-states for mcf 

In the equation (1), f and f' denote the two different frequencies of two different  
p-states. CPIf' is the estimated CPI at the p-state of f', and CPIf is the measured CPI at 
the p-state of f.  β0, β1, β2 are regression coefficients. These coefficients indicate the 
relative significance of the corresponding terms obtained by the regression analysis. 

3.2   Linear Regression Model 

A regression model is a compact mathematical representation of the relationship 
between the response variable and the independent variables in a given design space 
[13]. Linear regression models are widely used to obtain predictions of the response 
variable at arbitrary points in the design space. Linear regression is represented as 
follows: 

i

k

j
jiji exy ++= ∑

=1
0 ββ                                                 (2) 

where yi is the ith observation of the response variable which depends on the 
independent variables x1, x2, … ,xk.  The βj are the coefficient of the variable xj and an 
estimation of the value can provide the useful relationship. The ei is the error term 
representing the deviation of the ith observation value (i.e., yi) from the estimated 
value by the given linear equation. 

A very elegant method for estimating βj is the method of least squares. This 
method of estimation, which leads to estimates of certain optimal properties, is based 
on the appealing idea of choosing βj to minimize the squares of the error term. That is, 
determining βj that minimizes MSE (Mean Squares Error) is one of our goals. 
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If the relationship equation could be derived, very useful information could also be 
obtained by using the equation. In this paper, CPI under a certain p-state is predicted by 
applying the values of CPI and MemInst under a different p-state using equation (1). 
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Another problem considered in the regression analysis is that of statistical testing 
for the null hypothesis 0:0 =jH β  (j=1,2,…, k). The F-test is a standard statistical 

method for testing the regression model, in which the total variation (SST) is 
decomposed into two terms: the variations due to linear regression (SSR) and the 
regression error (SSE). The definitions of SST, SSR, and SSE are 

2
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where y  is the mean of the observed values of response variables and iŷ  are the 

predicted values by the regression equation. The sample coefficient of determination 
R2 can be calculated by 

SST

SSR
R =2 , )120( ≤≤ R                                               (5) 

R2 provides the multiple correlation statistic, so the larger the value of R2 and the 
smaller the value SSE the better the fit of the predicted value to the observations.  
F-statistic F0 for the hypothesis test is defined as 

10 −−
=

kn

SSE

k

SSR
F                                                (6) 

If the F-statistic value is lager than the given significance level which is referred to 
the F-distribution, the null hypothesis 0:0 =jH β  is rejected, in other words, the 

regression equation has significant meanings. 

3.3   Linear Performance Model 

We derive coefficients, βj, for equation (1) by the above regression analysis. The 
experimental data were obtained from the execution of SPEC CPU2000 benchmark  

 
Table 2. Estimated regression coefficients for each p-state 

 (a) Response variable CPI1.6GHZ case                    (b) Response variable CPI1.3GHZ case 

f β0     β1      β2 R2     F0  f β0     β1       β2 R2       F0 

1.3GHz 

1.07GHz 

0.8 GHz 

-0.16  1.01   9.85 

-0.02  1.00  20.39 

-0.06    1.02    29.08 

0.99  2864261

0.98  1272807

0.98    1736878 

 

 

 

1.3 GHz 

1.07GHz 

0.8GHz 

0.04   0.96  -8.16

-0.01  0.99  10.30

-0.04    1.02    18.92 

0.99  2417377 

0.98  1978693 

0.99  3343031 
 

(c) Response variable CPI1.07GHZ case                   (d) Response Variable CPI0.8GHZ case 

f β0      β1     β2 R2     F0  f β0    β1      β2 R2      F0 

1.6GHz 

1.3GHz 

0.8GHz 

  0.08    0.94   -17.31 

  0.04     0.98    -9.53 

 -0.02   1.01      8.88 

0.97    910968 

0.98  1769944 

0.98  1707008 

 

 

 

1.6 GHz 

1.3 GHz 

1.07 GHz 

0.11  0.92  -25.39 

0.06  0.96  -17.91

0.04     0.97     -8.35 

0.96  835010 

0.99  2272772 

0.98    1536522 
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using the four p-states on Pentium-M processor. The values of each variable are 
sampled at every 100M instructions interval. And then, we derived the relationships 
between the CPI values of two different p-states including MemInst. For each pair (f,f'), 
the coefficients βj are determined through the linear regression analysis. Table 2 shows 
the results of the regression analysis. The coefficients are obtained for the performance 
prediction of each p-state in equation (1). For example, Table 2 (a) shows the 
coefficients to estimate CPI1.6GHZ (f' = 1.6 GHz) from CPIf and MemInstf when f=1.33 
GHz, 1.07 GHz, 0.8 GHz in equation (1). Table 2, also, shows the values of R2 and F0. 
For all cases they are sufficiently large, so we can conclude that the null hypothesis 

0:0 =jH β  is rejected, that is, the regression equation has significant meanings. 

Figure 3 shows the plotting of pairs between the observed values and the predicted 
values. It shows a very good fit of the model to real observed experimental data. 

 

 
Fig. 3. A plotting of pairs (observed value, predicted value) 

4   Dynamic Power Management 

Using the linear regression model for performance estimation, we designed a dynamic 
power management framework on a Pentium-M processor (Model 730) using an off-
the-shelf laptop computer (Toshiba Satellite A80) running Linux kernel 2.6-19. 
Workload behavior is monitored with PMCs dynamically for a program region of 
every 100M instructions. To eliminate the effect of timing variations across a p-state 
change during monitoring, we monitor workload behavior at a fixed interval of 100M 
instructions. After 100M instructions a performance monitoring interrupt (PMI) 
handler is invoked. The PMI handler is implemented as a loadable kernel module on 
Linux kernel. The PMI monitors application execution through two PMCs for retired 
instructions (INST_RETIRED event), memory bus transaction (BUS_TRAN_MEM 
event) and a time stamp counter (TSC) for clocks on the Pentium-M processor.  
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Figure 4 shows our dynamic power management framework. From the monitored 
values, CPI (the ratio of clock cycles to instructions retired) and MemInst (the ratio of 
memory bus transactions to instructions retired) are calculated. Performance impact is 
then estimated using our projection model, equation (1), with the calculated 
parameters to determine a p-state for the next interval. CPIs of all the p-states except 
current p-state are estimated. After getting CPIs, the expected run times for all  
p-states are calculated. We choose the p-state with the lowest frequency within the 
specified performance constraint by comparing their estimated run times. Then,  
the new p-state with the selected frequency is applied to next interval. Before exiting 
the PMI handler, the PMCs and a TSC are reinitialized and the counters are restarted.  

 

 
Fig. 4. Our dynamic power management framework with the runtime performance projection 
model 

5   Evaluation Results 

For evaluation, we use SPEC CPU2000 benchmark (178.galgel benchmark is 
excluded because of compile error). We measured execution time and computed 
energy consumption for each benchmark program. We could not measure actual 
energy used but calculated the energy consumption instead using the following 
equation for CMOS circuit.  

fTCVPTE 2==                                                     (7) 

where P is the dynamic power, C is the switched capacitance, V is the supply voltage, 
f is the clock frequency and T is the total execution time of the program. Let’s assume 
the program is executed on the processor with m p-states and DVFS is applied for 
dynamic power management. We define  

∑ ∑ ∑
= = =

≈==
m

i

m

i

m

i
iiiiiiii TVfCTVfCEE

1 1 1

22 )(                                   (8) 

PMI Interrupt Handler 
- Stop PMCs for INST_RETIRED, BUS_TRAN_MEM 
  events;  
- Read the values of the PMCs and clocks; 
- Calculate CPI and MemInst; 
- Estimate CPIs for all p-states using the equation (1); 
- Calculate run times from the CPIs; 
- Select a p-state with the lowest frequency satisfying 

requirement by comparing the run times; 
- If (!same as current p-state) then 
             Set new p-state using DVFS for next interval; 
- Reinitialize and start PMCs; 

Application 
program 

PMI interrupt at 
every 100M 
instructions  

Return to 
application 
program 
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where Ei is the total energy consumption using ith p-state, and Ci, fi, Vi and Ti are 
switched capacitance, clock frequency, supply voltage and execution time for the ith 
p-state. We assume all the switched capacitances are the same. By measuring program 
execution for each p-state, we can get their relative energy consumptions.  
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(a) Normalized execution time 
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(b) Normalized energy consumption 

Fig. 5. Execution time and energy consumption normalized to 1.6GHz result for SPEC 
CPU2000 benchmark 

Figure 5 shows the results of execution time and energy consumption normalized 
to the values at 1.6 GHz which is the maximum frequency allowed. It also shows the 
results at 0.8 GHz, the minimum-frequency among all p-states, and our power 
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management under the performance constraints of 10%, 20%,40% and 80%, 
respectively. Here, 10% performance constraint means the performance degradation 
should be less than 10% comparing to the maximum performance at 1.6GHz. Swim, 
mcf, equake, applu, lucas, art, fma3d on the left are memory-bound applications 
(MemInst are above 0.01). They have the least performance loss and most energy 
saving using dynamic power management. The benchmarks on the right are CPU-
bound applications. They have the least energy saving with most performance 
degradation. In Figure 5 (a), on average, the values of normalized time are 1.03, 1.19, 
1.45 and 1.79 for 10%, 20%,40% and 80% performance constraints, respectively. 
There is only one violation at the 40% performance constraint. Almost all benchmarks 
in Figure 5 (a), except at 20% in which it’s results are close to the constraint, are well 
within their required tolerance. In the 10% case, our performance model estimates the 
performance too conservatively. For the 40% and 80% cases, memory-bound 
applications satisfy the requirements well but CPU-bound applications violate the 
constraints. We think this discrepancy is due to the error caused by four discrete  
p-states and the error from the CPI term in equation (1). But, in general, our 
performance projection model estimates performance well. The execution time for the 
80% case is 1% greater than the minimum-frequency 0.8GHz because of the overhead 
of the PMI handler and DVFS overhead. Figure 5 (b) shows the energy consumption 
normalized to 1.6 GHz. The smaller value means more energy saving. Memory-bound 
applications show much energy saving with less performance degradation. On 
average, normalized energy consumption are 0.97,0.82,0.62,0.52 for 10%,20%, 
40%,80% constraint, respectively. 

Figure 6 shows average execution time and energy consumption normalized to 
1.6GHz including the GPHT predictor. GPHT is a dynamic power management 
framework with a phase predictor that has a similar structure as a branch predictor [7]. 
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Fig. 6. Average execution time and energy consumption normalized to 1.6GHz including 
GPHT 
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Fig. 7. Average breakdown of p-states for SPEC CPU2000 benchmark 

 
We implemented it using the same value of Mem/micro-op (the ratio of memory bus 
transactions to micro-operations retired) to classify phases. It has no explicit 
performance requirement. The result shows that average normalized time is 1.11 and 
energy consumption is 0.88. GPHT shows better results comparing to the case of our 
10% performance requirement. However, its energy saving is limited for less 
aggressive power management. Our power management for the 20% performance 
requirement saves much more energy. Figure 7 shows the average breakdown of p-
states used during the execution for SPEC CPU2000 benchmark. 

6   Conclusion 

This paper presents a runtime performance projection model for dynamic power 
management. This model is used to predict performance impact of a p-state (voltage-
frequency pairs). Using linear regression analysis, a first-order linear equation is built 
to estimate performance impact from monitored activity information such as CPI 
(cycles per instruction) and the number of memory accesses. We develop a dynamic 
power management framework using the performance projection model. It monitors 
and estimates workload behavior through hardware performance monitors sampled at 
every 100M instructions on Pentium-M processor. At each sample it estimates the 
performance of all allowable p-states. The lowest frequency that still meets a pre-
determined level of tolerance in performance degradation is selected for next 
execution interval. We experiment our framework with SPEC CPU2000 benchmark. 
The result shows that our dynamic management saves energy consumption by 3%, 
18%, 38% and 48% with a performance degradation of 3%, 19%, 45% and 79% under 
the pre-determined performance degradation tolerance of 10%,20%,40% and 80%, 
respectively. When we compare it with the GPHT power management scheme [7] that 
has 12% energy saving with 11% performance loss, our management framework can 
provide more energy saving. 
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Abstract. The perceptron predictor is a highly accurate branch pre-
dictor. Unfortunately this high accuracy comes with high complexity.
The high complexity is the result of the large number of computations
required to speculate each branch outcome.

In this work we aim at reducing the computational complexity for
the perceptron predictor. We show that by eliminating unnecessary data
from computations, we can reduce both predictor’s power dissipation
and delay. We show that by applying our technique, predictor’s dynamic
and static power dissipation can be reduced by up to 52% and 44%
respectively. Meantime we improve performance by up to 16% as we
make faster prediction possible.

1 Introduction

The perceptron branch predictor is highly accurate. The high accuracy is the
result of exploiting long history lengths [1] and is achieved at the expense of high
complexity.

Perceptron relies on exploiting behavior correlations among branch instruc-
tions. To collect and store as much information as possible, perceptron uses sev-
eral counters per branch instruction. Such counters use multiple bits and record
how each branch correlates to previously encountered branch instructions. The
predictor uses the counters and performs many steps before making the pre-
diction. These steps include reading the counters and the outcome history of
previously encountered branches and calculating the vector product of the two.

In this study we introduce power optimizations for perceptron. We show that
while the conventional scheme provides high prediction accuracy, it is not effi-
cient from the energy point of view. This is mainly due to the observation that
not all the computations performed by perceptron are necessary. In particular,
computations performed on counter lower bits are often unnecessary as they
do not impact the prediction outcome. We exploit this phenomenon and reduce
power dissipation by excluding less important bits from the computations.

We rely on the above observation and suggest eliminating the unnecessary
bits from the computation process. We propose an efficient scheme to reduce
the number of computations and suggest possible circuit and system level im-
plementations.

L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 198–208, 2007.
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Power optimization techniques often trade performance for power. In this
work, however, we not only reduce power but also improve processor perfor-
mance. Performance improvement is possible since eliminating unnecessary com-
putations results in faster and yet highly accurate prediction. We reduce the
dynamic and static power dissipation associated with predictor computations
by 52% and 44% respectively while improving performance up to 16%.

The rest of the paper is organized as follows. In Section 2 we discuss per-
ceptron background. In Section 3 we discuss the motivation. In Sections 4 we
introduce our optimization. In Section 5 we explain our simulations methodology
and report results. In Section 6 we discuss related work. In Section 7 we offer
concluding remarks.

2 Background

The perceptron branch predictor [1] uses multiple weights to store correlations
among branch instructions. For each branch instruction, perceptron uses a weight
vector which stores the correlation between the branch and previously encoun-
tered branch instructions.

As presented in Figure 1, the perceptron predictor takes the following steps
to make a prediction. First, the predictor loads the weight vector correspond-
ing to the current branch instruction. Second, each weight is multiplied by the
corresponding outcome history from the history vector. Third, an adder tree
computes the sum of all the counters. Fourth, the predictor makes prediction
based on the sum’s sign. For positive summations, the predictor assumes a taken
branch otherwise the predictor assumes a not taken branch.

The outcome history is essentially a bit array, in which “0”s and “1”s repre-
sent not taken and taken outcomes respectively. However, in the multiplication

×

×

×

×

Fig. 1. The perceptron branch predictor using weight vector and history vector. The
dot product of the two vectors is used to make the prediction.
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process, “0”s are treated as “-1”, meaning that the corresponding weight must
be negated.

At the update time, the behavioral correlation among branch instructions is
recorded. The predictor updates the weights vector using the actual outcome of
the branch instruction. Each weight is incremented if branch’s outcome conforms
to the corresponding outcome history. Otherwise the weight is decremented.

3 Motivation

As presented in Figure 1, the perceptron predictor uses two vectors per branch
instruction. For every direction prediction, the predictor computes the dot prod-
uct of the two vectors.

The complexity of the computations involved in the dot product calculation
makes it a slow and energy hungry one. This process requires an adder tree,
with a size and complexity proportional to the size of the vectors and weights’
widths. The wider the weights are, the more complex the summation process
will be. Note that the perceptron predictor proposed in [1] uses 8-bit counters to
achieve the best accuracy. Furthermore, in order to achieve high accuracy, long
history lengths, resulting in long vectors, are required [1]. This also substantially
increases adder tree’s size and complexity.

In this study we show that the conventional perceptron predictor is not effi-
cient from the energy point of view. This is the result of the fact that not all
counter bits are equally important in making accurate predictions. Accordingly,
higher order bits of the weights play a more important role in deciding the final
outcome compared to lower order bits. In Figure 2 we present an example to
provide better understanding.

×

Fig. 2. The first calculation uses all bits and predicts the branch outcome as “not
taken”. The second one uses only higher bits (underlined) and results in the same
direction.

To investigate this further, in Figure 3 we report how often excluding the lower
n bits of each counter impacts prediction outcome. As reported, on average,
0.3%, 1.0%, 4.0%, 13.7%, and 25.8% of time eliminating the lower one to five
bits results in a different outcome respectively. This difference is worst (45%)
when the lower five bits are excluded for bzip2 (see Section 5 for methodology).



A Power-Aware Alternative for the Perceptron Branch Predictor 201

Fig. 3. How often removing the lower n bits from the computations results in a different
outcome compared to the scenario where all bits are considered. Bars from left to right
report for scenarios where one, two, three, four or five lower bits are excluded.

We conclude from Figure 3 that eliminating lower order bits (referred to as
LOBs) of the weights from the prediction process and using only higher order
bits (referred to as HOBs) would not significantly affect predictor’s accuracy.
We use this observation and reduce predictor’s latency and power dissipation.

4 LOB Elimination

Considering the data presented in Section 3, we suggest eliminating the LOBs
of the weights from the lookup and summation process. We modify the adder
tree to bypass the LOBs of the weights, and perform the summation only over
HOBs.

Excluding LOBs from the summation process reduces the size and complexity
of the adder tree required. Therefore, a smaller and faster adder can be used.
This will result in a faster and more power efficient lookup process.

As we show in this work, LOBs have very little impact on the prediction
outcome at the lookup stage. However, it is important to maintain all bits,
including LOBs, at the update stage. This is necessary to assure recording as
much correlation information as possible. Therefore, we do not exclude LOBs
at the update stage and increment/decrement weights taking into account all
counter bits.

In Figure 4 we present the modified prediction scheme. The adder tree does
not load or use all counter bits. Instead, the adder tree bypasses the LOBs of the
weights, and performs the summation process only on the HOBs. Eliminating
LOBs reduces power but can, in principle, impact accuracy and performance.

4.1 Accuracy vs. Delay

By eliminating LOBs from the lookup process, we reduce the prediction latency
at the cost of accuracy loss. However, a previous study on branch prediction
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× ×

××

Fig. 4. The optimized adder tree bypasses LOBs of the elements and performs the
addition only on the HOBs. Eliminating LOBs results in a smaller and faster adder
tree.

delay shows that a relatively accurate single-cycle latency predictor outperforms
a 100% accurate predictor with two cycles of latency [2].

To investigate whether the same general trade-off is true for perceptron, we
study if the prediction speedup obtained by eliminating LOBs is worth the ac-
curacy cost. In Section 5 we show that for the benchmarks used in this work
the performance improvements achieved by faster prediction outweigh the cost
associated with the extra mispredictions.

4.2 Power

By eliminating LOBs from the lookup process, we reduce both the dynamic and
the static power dissipated by the predictor. First, fewer bits are involved in the
computations, reducing the overall activity and dynamic power. Second, as we
reduce the adder tree’s size, we exploit fewer gates, reducing the overall static
power.

As we eliminate LOBs from the computations necessary at the prediction time,
reading all bit lines of the weight vector is no longer necessary. One straightfor-
ward mechanism to implement this is to decouple LOBs and HOBs. To this end,
we store LOBs and HOBs in two separate tables.

As presented in Figure 5, at the prediction time, the predictor accesses only
the tables storing HOBs, saving the power dissipated for accessing LOBs in the
conventional perceptron predictor. Note that while we save the energy spent
on wordline, bitline and sense amplifiers, we do not reduce the decoder power
dissipation as we do not reduce the number of table entries.
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××

× ×

Fig. 5. Predictor table is divided to HOB and LOB tables. Only the HOB table is
accessed at the prediction time.

5 Methodology and Results

For our simulations, we modify the SimpleScalar tool set [3] to include the con-
ventional perceptron branch predictor and our proposed optimization. We use
Simpoint [4] to identify representative 500 million instruction regions of the
benchmarks. We use a subset of SPEC2K-INT benchmarks for our simulations.

Table 1 reports the baseline processor used in our study. For predictor con-
figuration, we use the 64Kb budget global perceptron predictor proposed in [1].

For predictor power and timing reports, we use Synopsys Design Compiler
synthesis tool assuming the 180 nm technology. We use the high effort opti-
mization option of the Design Compiler, and optimize the circuit for delay. We
simulated both the conventional and the optimized perceptron predictors.

Since we assume that table read time remains intact, for timing reports, we
only measure the time the adder tree requires.

For our simulations, we assume the processor has a 1GHz frequency.
For simplicity, we use the notation of PER-n to refer to a perceptron predictor

modified to eliminate the lower n bits from the computations.

Table 1. Processor Microarchitectural Configurations

Fetch/Decode/Commit 6

BTB 512

L1 I-Cache 32 KB, 32B blk, 2 way

L1 D-Cache 32 KB, 32B blk, 4 way

L2 Unified-Cache 512 KB, 64B blk, 2 way

L2 Hit Latency 6

L2 Miss Latency 100

Predictor Budget 64Kbits
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Fig. 6. Time/cycle required to compute the dot product

Fig. 7. Power reduction for the adder tree compared to the conventional perceptron.
Results are shown for PER-1, PER-2, PER-3, PER-4 and PER-5.

5.1 Timing

Figure 6 reports time (in nanoseconds) and the number of cycles required to
compute the predictor computation result. We report results for the original
perceptron predictor and five optimized versions. As reported, the original pre-
dictor takes 7 clock cycles to compute the result. By eliminating one bit from
the computation process no clock cycle is saved. However, removing two, three
or four bits saves one clock cycle and removing five bits saves two clock cycles.
We use these timings in our simulations to evaluate the optimized predictors.

5.2 Power Dissipation

Figure 7 reports the reduction in both static and dynamic power dissipation
for the predictor’s adder tree. Results are obtained by gate level synthesis of the
circuit. Eliminating one to five bits saves from 13% to 52% of the dynamic power
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Fig. 8. Prediction accuracy for the conventional perceptron predictor and five opti-
mized versions, PER-1, PER-2, PER-3, PER-4 and PER-5. The accuracy loss is neg-
ligible except for PER-5.
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Fig. 9. Performance improvement compared to a processor using the conventional per-
ceptron predictor. Results are shown for processors using PER-1, PER-2, PER-3, PER-
4 and PER-5 predictors.

and 8% to 44% of the static power dissipation. This is the result of exploiting
smaller adders.

5.3 Prediction Accuracy

As we use fewer bits to make predictions, we can potentially harm accuracy.
To investigate this further in Figure 8 we compare prediction accuracy for six
different predictors: The original perceptron predictor, PER-1, PER-2, PER-3,
PER-4 and PER-5. As reported, average misprediction is 4.80% 4.81% 4.82%
4.85% 5.04% 5.48% for perceptron, PER-1, PER-2, PER-3, PER-4 and PER-5
respectively.
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5.4 Performance

Figure 9 reports processor’s overall performance compared to a processor using
the original perceptron predictor. We report for five different processors using
PER-1, PER-2, PER-3, PER-4 and PER-5 branch predictors. As reported, aver-
age IPCs are 1.15 1.15 1.25 1.25 1.35 1.43 for Perceptron, PER-1, PER-2, PER-3,
PER-4 and PER-5 respectively.

Although the optimized perceptron predictor achieves slightly lower accuracy
compared to the original one, the overall processor performance is higher. As
explained earlier, this is the result of achieving faster prediction by eliminating
LOBs.

6 Related Work

Vintan and Iridon [5] suggested Learning vector quantization (LVQ), a neural
method for branch prediction. LVQ prediction is about as accurate as a table-
based branch predictor. However, LVQ comes with implementation difficulties.

Aasaraai and Baniasadi [6] used the same technique used in this work on
the O-GEHL branch predictor. They showed that power savings are possible
by eliminating lower order bits from computations involved in the O-GEHL
branch predictor. They also use disabling technique in [7] to improve the power
efficiency of the perceptron branch predictor. They reduced perceptron power
dissipation by utilizing as much resources as needed according to the branch
behavior, effectively reducing overall number of computations.

Loh and Jimenez [8] introduced two optimization techniques for perceptron.
They proposed a modulo path-history mechanism to decouple the branch out-
come history length from the path length. They also suggested bias-based fil-
tering exploiting the fact that neural predictors can easily track strongly biased
branches whose frequencies are high. Therefore, the number of accesses to the
predictor tables is reduced due to the fact that only bias weight is used for
prediction.

Parikh et al. explored how branch predictor impacts processor power dissipa-
tion. They introduced banking to reduce the active portion of the predictor. They
also introduced prediction probe detector (PPD) to identify when a cache line
has no branches so that a lookup in the predictor buffer/BTB can be avoided [9].

Baniasadi and Moshovos introduced Branch Predictor Prediction (BPP) [10].
They stored information regarding the sub-predictors accessed by the most re-
cent branch instructions executed and avoided accessing underlying structures.
They also introduced Selective Predictor Access (SEPAS) [11] which selectively
accessed a small filter to avoid unnecessary lookups or updates to the branch
predictor.

Huang et al. used profiling to reduce branch predictor’s power dissipation [12].
They disabled tables that do not improve accuracy and reduced BTB size for
applications with low number of static branches.
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Our work is different from all the above studies as it eliminates unnecessary
and redundant computations for the perceptron predictor to reduce power. Un-
like many previously suggested techniques, our optimizations do not come with
any timing or power overhead as we do not perform any extra computation or
use any additional storage.

7 Conclusion

In this work we presented an alternative power-aware perceptron branch predic-
tor. We showed that perceptron uses unnecessary information at the prediction
time to perform branch direction prediction. We also showed that eliminating
such unnecessary information from the prediction procedure does not impose
substantial accuracy loss. We reduced the amount of information used at the
prediction time, and showed that it is possible to simplfiy the predictor struc-
ture, reducing both static and dynamic power dissipation of the predictor.

Moreover, we showed that by avoiding such computations it is possible to
achieve faster branch prediction. Consequently, we improved the overall proces-
sor performance despite the slightly lower prediction accuracy.
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Abstract. Nowadays networks-on-chip are emerging as a hot topic in IC de-
signs with high integration. Much research has been done in this field of study 
recently, e.g. in routing algorithms, switching methods, VLSI Layout, and 
effects of resource allocation on system performance. On the other hand, 
three-dimensional integrated circuits allow a time-warp for Moore's Law. By 
vertically stacking two or more silicon wafers, connected with a high-density, 
high-speed interconnect, it is now possible to combine multiple active device 
layers within a single IC. In this paper, we examine performance and power 
consumption in a three dimensional network-on-chip structure under different 
types of traffic loads, routing algorithms, and switching methods. To the best of 
our knowledge, this is the first work dealing with 3D NoCs implemented in a 
3D VLSI model. 

Keywords: 3D VLSI, 3D NoCs, Performance evaluation, Power consumption. 

1   Introduction 

Nowadays there are many challenges in designing a complicated integrated circuit. 
System-on-chip (SoC) is a novel idea that has been proposed to decrease such com-
plexity in designing an IC. This kind of approach has some limitations. One of the 
major problems associated with future SoC designs arises from non-scalable global 
wire delays [6]. These limitations have been mentioned in many researches [1], [2], 
[6], [7], such as limitation in the number of IP cores that can be connected to the 
shared bus, arbitration for accessing the shared bus, reliability, and so on. To over-
come these limitations, network-on-chip (NoC) is introduced in recent years and 
much research has been conducted in this field of study. The classification of these re-
searches has been discussed in [5]. Another new technology that has been proposed is 
three dimensional VLSI that exploits the vertical dimension to alleviate the intercon-
nect related problems and to facilitate heterogeneous integration of technologies to re-
alize a SoC design [10]. In this paper we claim that by combining the ideas in these 
two types of technology, a new kind of architecture for NoC is imaginable and gen-
eral characteristics of this new architecture under different circumstances have been 
investigated. In [18], new insights on network topology design for 3D NoCs is pro-
vided and issues related to processor placement across 3D layers and data manage-
ment in L2 caches is addressed. In three dimensional designs with the aid of small 
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links in length between adjacent layers, there is an improvement in performance of 
the network. The performance and also the power consumption of the circuit are re-
lated to the traffic pattern, routing algorithm, switching method, and so on. In this pa-
per, an analysis of the performance and power consumption of three dimensional 
mesh topology under different circumstances is presented. Two outstanding features 
of this kind of topology are fast vertical communication and reduction in chip area 
size.  

This paper is organized as follows. The next two sections present the background 
in NoC, 3D VLSI, and performance metrics in NoC. Section 4 explains the simulation 
environment that the results have obtained in. The simulation results and experimental 
evaluation of our approach are presented in section 5. We conclude the paper in  
section 6. 

2   The Basics of Network-on-Chip 

Figure 1 shows the basic components of a typical mesh-connected NoC. The ideas 
and analysis in network-on-chips are very similar to those in interconnect networks in 
computer networks.  

 

 

Fig. 1. A 4x4 Mesh Topology 

There are four basic components in every NoC that should be considered: 1) Proc-
essing elements that are the IP cores connected by the network; 2) Routers and 
switches that route the packets till received at destination; 3) Network adapters that 
are the interface between PEs and switches; 4) Links that connect two adjacent 
switches. In analysis of the network, the behavior of these components should be con-
sidered carefully. 

One of the benefits of network architecture is that layers in OSI model can be ap-
plied in design and analysis. In each layer of the model, important research topics have 
been discussed briefly in [5]. For instance, in [8], an architecture-level methodology 
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for modeling, analysis, and design of NoC is presented and also tested through two 
NoC designs. 

A different set of constraints exists when adapting these architectures to the SoC 
design paradigm. High throughput and low latency are the desirable characteristics of 
a multiprocessor system. Instead of aiming strictly for speed, designers increasingly 
need to consider energy consumption constraints, especially in the SoC domain [6]. 
So, in order to compare different NoC architectures, there are some important metrics 
that should be considered such as latency, energy consumption, and throughput [6]. In 
this paper, these metrics are investigated in the 3D mesh architecture. This compari-
son can be obtained in different abstraction levels of simulation environment. In [25], 
a VHDL based cycle accurate register transfer level model for evaluating the latency, 
throughput, dynamic and leakage power consumption of NoCs is presented. This 
evaluation can be analytic; for each architecture in [9], analytical expressions for area, 
power dissipation, and operating frequency as well as asymptotic limits of these func-
tions are derived. The analysis quantifies the intuitive NoC scalability advantages. 
Modeling in software is an easy and fast way to evaluate and compare different archi-
tectures. We use this method in our work. Power is estimated by a model proposed in 
[19], called Orion, and latency can be evaluated in the main simulator for interconnec-
tion networks that has been developed on the basis of that reported in [22]. 

3   The 3D VLSI Technology 

There are various vertical interconnect technologies that have been explored, includ-
ing wire bonded, microbump, contactless (capacitive or inductive), and through-via 
vertical interconnect [17]. Presently, there are several possible fabrication technolo-
gies that can be used to realize multiple layers of active-area (single crystal Si or  
recrystallized poly-Si) separated by interlayer dielectrics (ILDs) for 3D circuit proc-
essing [10]. A brief description of these alternatives is given in [10].   

Generally, there are some main advantages using the third dimension in VLSI de-
sign and these advantages can be very useful in NoC architectures. The benefits of 3D 
ICs include: 1) higher packing density due to the addition of a third dimension to the 
conventional two-dimensional layout, 2) higher performance due to reduced average 
interconnect length, and 3) lower interconnect power consumption due to the reduc-
tion in total wiring length [18]. Furthermore, the 3D chip design technology can be 
exploited to build SoCs by placing circuits with different voltage and performance re-
quirements in different layers [10]. The first benefit is true for conventional circuits 
and also for NoC architectures. For example, if 64 IP cores in a NoC architecture are 
organized in a 3D network instead of 2D organization, the chip area reduces almost 
four times and we will have more integration in design. In conventional integrated 
circuits, the length of global wires is very important in latency and power consump-
tion especially in emerging deep sub-micron technologies. In NoC architectures, even 
though wires are invariable in size, links between vertical layers can be very short in 
comparison with the links in each layer in second dimension. The shorter the  
links are, the less power they consume. The last benefit that was mentioned is very 
amazing in SoC designs that is applicable in NoC architectures. The digital and ana-
log components in the mixed-signal systems can be placed on different Si layers 
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thereby achieving better noise-performance due to lower electromagnetic interference 
between such circuit blocks [10].  

There are currently various 3D technologies being explored in industry and acade-
mia, but the two most promising ones are Wafer-Bonding [14], [18] and Multi-Layer 
Buried Structures (MLBS) [17], [18]. The details of these processes are discussed in 
[10]. There are currently two primary wafer orientation schemes, Face-To-Face and 
Face-To-Back, as mentioned in [16]. While the former provides the greatest layer-to-
layer via density, it is suitable for two-layer organizations, since additional layers 
would have to employ back-to-back placement using larger and longer vias. Face-To-
Back, on the other hand, provides uniform scalability to an arbitrary number of layers, 
despite a reduced inter-layer via density [18]. As mentioned in [17], [18], wafer bond-
ing requires fewer changes in the manufacturing process and is more popular in indus-
try than MLBS technology. Therefore, the integration approach we adopt in this study 
is the wafer-bonding technology [17]. 

Previously in many studies the performance of three dimensional designs has been 
investigated and examined [10], [11], [14], [15], [16]. Most of the performance 
evaluations are based on wire-length distributions. It means that a stochastic 3D inter-
connect model is presented and the impact of 3D integration on circuit performance 
and power consumption is investigated. In this study, our attention is focused on a 
network architecture point of view of three dimensional technologies. 

4   Simulation Environment 

Modeling of NoCs is to achieve two main goals: 1) Exploration of design space, and 
2) Evaluation of trade-offs between different parameters like power, latency, design 
time and so on [5]. In many studies, different parameters of NoCs are modeled and 
investigated [4], [6], [8], [23], [24]. For instance, in [8], a hierarchal modeling for on-
chip communication is presented. The model consists of two main parts: 1) On-chip 
communication architecture (OCA), and 2) Processing elements. 

The simulator, in our work, consists of two main parts: 1) A power model for 
evaluating power consumption in components of the network in each layer (called 
Orion), 2) An interconnection network simulator that is developed based on POPNET 
simulator presented in [22]. Orion is a power-performance interconnection network 
simulator that is capable of providing detailed power characteristics, in addition to 
performance characteristics, to enable rapid power performance tradeoffs at the archi-
tecture level [19]. 

The model computes the power consumption in different components of the net-
work according to the events that occur during simulation. So, according to the 
model, the network is decomposed into basic components and power models are ap-
plied for each component. As mentioned in [19], the total energy each flit consumes 
at a specified node and its outgoing link is given by: 

flit wrt arb read xb linkE E E E E E= + + + +  (1) 

It consists of five components: 1) the power that is consumed in writing into buff-
ers; 2) The power of arbiter; 3) The power that is consumed in reading from buffers; 
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4) The power of the internal crossbar; 5) The power that is consumed in the links. The 
general switch model is illustrated in figure [19].   

In [20], the models for each component are discussed in detail. In [21], an architec-
tural leakage power modeling methodology is also proposed.  

The POPNET simulator that is based on Orion is presented in [22] only for a two 
dimensional mesh topology. We have customized the simulator to support other to-
pologies and other routing algorithms. So, the simulator takes the configuration pa-
rameters and will do the simulation. The power is obtained and reported for each layer 
and each component of the network.  

 

Fig. 2. A 3D mesh structure (4x4x4 mesh) 

5   Simulation Results 

We applied our simulation to a three dimensional mesh structure with four active lay-
ers as shown in figure 2. We have examined the effect of different parameters (like: 
different switching methods, routing algorithms, length of messages, number of vir-
tual channels, traffic patterns) on the performance and power consumption (on each 
layer) of the network. The length of each flit has been assumed 32 bits and the length 
of each message will be a factor of the number of flits. In most of the simulations, the 
length of messages is assumed to be 32 flits and the size of buffers is 2 flits except for 
virtual-cut-through switching which uses a full message size buffer of 32 flits. Flits 
represent logical units of information, which correspond to physical quantities, that is, 
the number of bits that can be transferred in parallel in a single cycle [3]. Injection 
rate is the probability that a node sends a packet during a cycle, and the traffic accord-
ing to the injection rate is generated on the basis of Poisson distribution. 

It is seen from figure 3 that, if the length of messages is doubled, the traffic of the 
network will be almost doubled too. So at a same injection rate before network satura-
tion the average latency of the network with longer messages dominates the one with 
shorter messages. Also the network will be saturated at a lower injection rate. At the 
saturation point the latency will increase exponentially, due to the limitations in  
network resources. The power that dissipates in the network also depends on the  
messages' length to a great extend. If the message length increases, consequently at a 
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Fig. 3. Total power consumption and performance comparison for two different message 
lengths (32-flit and 64-flit). Different parameters of simulation and network are: (switching 
method: wormhole, routing algorithm: dimension-order routing, length of input buffer: 2 flits, 
number of virtual channels per physical channel: 2, traffic pattern: uniform). 
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Fig. 4. Total power consumption and performance comparison for two different numbers of vir-
tual channels per physical channel (2 and 4). Other parameters are the same as figure 3. 

same injection rate there are more flits in the network communicated and so they will 
dissipates more power. The power dissipation will increase linearly according to the 
injection rate. Although the network with longer messages dissipates more power, 
near the saturation point the power consumption will be the same and remains con-
stant for the two networks. This stability also can be seen in all following results in 
this paper. Beyond saturation, no additional messages can be injected successfully 
into the system and, consequently, no additional energy is dissipated.   The value of 
power dissipation is the same for two conditions beyond saturation point because at 
the saturation point the network is overloaded with flits of data and there is no differ-
ence between the network with 32-flit messages and 64-flit messages. 

Figure 4 shows the impact of the number of virtual channels. The main goal of 
adding virtual channels in interconnection networks is to improve performance. As 
shown in figure 4, the network with 4 virtual channels can handle the traffic with  
larger injection rate in comparison with the network with 2 virtual channels per physi-
cal channel. The expense that we pay is more power that dissipates in the virtual 
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channels. At the lower injection rates, there is no magnificent difference between 
networks with 2 and 4 virtual channels, but when the network approaches saturation 
point the impact of number of virtual channels is visible. With more virtual channels, 
there are more memory elements in the network for flits and so the accepted traffic 
will increase. The network with 4 virtual channels will approach saturation point ap-
proximately 30% later than the network with 2 virtual channels but it consumes about 
30% more power than the other one.   
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Fig. 5. (a) Total power dissipation in each of four active layers. (b) Total power dissipation in 
vertical and horizontal links. Different parameters of simulation and network are: (switching 
method: wormhole, routing algorithm: dimension-order routing, length of input buffer: 2 flits, 
number of virtual channels per physical channel: 2, traffic pattern: uniform, message length: 32 
flits). 

In Figure 5.a, we show the power dissipation in each layer of the network in the 
case of uniform traffic. As mentioned before, the power remains constant beyond the 
saturation point. The power that dissipated in layer 1 and 4 is approximately equal. 
Also, the power in layers 2 and 3 is the same. Layers 1 and 4 are symmetric in the 
network architecture and also are layers 2 and 3. So, in the uniform traffic, they will 
handle the same amount of messages in the fixed period of time. Layers 2 and 3 con-
sumes more power than layers 1 and 4 because layers 2 and 3 are in the middle of the 
structure and they take the messages from up and down layers, but layers 1 and 4 are 
adjacent only to one layer and so they should handle small amount of messages and 
hence they will consume less power (as shown in figure 5.a).  

In three dimensional structures, the vertical links according to their shortness con-
sumes much less power than horizontal links as shown in figure 5.b. In deep sub-
micron technologies the power dissipation in links becomes dominant factor and so 
the shorter links with less capacitance and resistance are favorable. 

Figure 6 shows the power that dissipates in each layer in the case of hotspot traffic. 
The hotspot is located in layer 2 with a hit probability of 0.16 (it means that other 
nodes will send the packets to the hotspot node with the probability of 0.16). The lo-
cation of hotspot is very important. In figure 5.a, the power that dissipates in layer 2 is 
similar to the power consumption of layer 3, but as it is shown in figure 6, the power 
that dissipates in layer 2 is larger than any other layers. The reason is that the dimen-
sion-order routing algorithm is in the order of z-y-x. So, the traffic in layer 2 will  
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increase because the packets that destined for the hotspot at first will move through z 
dimension. This behavior is important in three dimensional designs; because if the 
hotspot is located in lower layers the heat transfer becomes difficult because the heat 
should move through upper layers to reach the sink. With the presence of hotspots in 
the network, the network will approach the saturation point more quickly. 
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Fig. 6. The power dissipation in each layer in the case of hot-spot traffic 

If the probability of sending messages of other nodes to the hotspot increases, the 
network will saturates more quickly as shown in figure 7.a. Figure 7.a shows the av-
erage delay of network in the case of hotspot that is located in layer 1 with two prob-
abilities 0.2 and 0.1. 

In the previous simulations, the routing algorithm that has been used is dimension-
order routing algorithm (in the order of z-y-x). Dimension order routing is one of the 
most popular deterministic routing algorithms. Here, a message is routed along  
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Fig. 7. (a) Average delay of the network in the case of hot spot traffic with two different prob-
abilities p=0.1 and p=0.2. (b) The comparison of two approaches in dimension order routing al-
gorithm in the presence of hotspot in layer 2. Power dissipation of the layer 2 that the hot spot 
is located in is shown. 
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Fig. 8. Average delay and power dissipation in the case of wormhole and virtual-cut-through 
switching 

decreasing dimensions with a decrease occurring only when zero hops remain in all 
the higher dimensions. In the case of hotspot located in layer2, the order of dimen-
sions in the algorithm has been changed (in the order of y-x-z). As it was mentioned, 
the power that dissipates in the layer that hotspot is placed is higher than other layers. 
The power dissipation in the hotspot layer of the network in two cases is shown in 
figure 7.b. The power dissipation in layer 2 is reduced because the traffic in the layer 
has been decreased. 

In virtual-cut-through switching method the size of buffers in each node is equal to 
the size of packets. So every node can save a complete packet in the case of blocking. 
By using much more buffers in each node, the network can handle a larger traffic load 
that will result in lately saturation. As the network can tolerate much more messages, 
the power that dissipates in the components of the network continues to increase (as 
shown in figure 8).  

6   Conclusion 

In this paper we have claimed that by combining the ideas in 3D VLSI and NOC 
technologies, a new kind of architecture for NoC is imaginable and the main goal of 
this paper is to examine general characteristics and parameters of a three dimensional 
network-on-chip architecture. It is possible to evaluate other topologies in three-
dimension and compare the performance and power behavior of the network with two 
dimensional implementations in our simulation platform. Fast communications in ver-
tical links can improve performance and power dissipation to a great extent. Of 
course, the power dissipation in each layer especially in lower layers is very important 
and should be considered carefully. Modeling the heat transfer in 3D designs also can 
be mentioned based on power dissipation in each active layer. Still there are many to-
pologies and parameters in three dimensional network-on-chips that should be ex-
plored.   
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Abstract. We present a design technique to meet application driven
constraints for performance-resource optimization of a generalized 2D
convolution with quadrant symmetric kernels. A fully pipelined multi-
plierless digital architecture for computing modularized 2D convolution
utilizing the quadrant symmetry of the kernels is proposed in this paper.
Pixels in the four quadrants of the kernel region with respect to an image
pixel are considered simultaneously with distributed queues for comput-
ing the partial results of the convolution sum in time-sliced fashion. The
new architecture performs computations in log-domain by utilizing low
complexity high performance log2 and inverse-log2 estimation modules.
An effective data handling strategy is developed to minimize routing of
data path in conjunction with the logarithmic modules to eliminate the
necessity of the multipliers in the architecture. The proposed architecture
is capable of performing convolution operations for 45.5 (1024×1024)
frames or 47.73 million outputs per second in minimum resource con-
figuration with 8×8 kernels in a Xilinx’s Virtex XC2V2000-4ff896 field
programmable gate array (FPGA) at maximum clock frequency of 190.92
MHz. Analysis shows that the performance and resource utilization be-
tween the fully parallel and fully resource constrained architectures are
proportional to f and 1/f, respectively where f is the application driven
reusability of the main computing components. In addition to resource
reduction from optimization scheme, evaluation in Xilinx’s core gener-
ator also showed that the proposed design results in 60% reduction in
hardware when compared to the design using pipelined multipliers.

Keywords: 2D convolution, log-domain computation, multiplier-less ar-
chitecture, quadrant symmetric kernels, modularized optimization,
FPGA based architecture.

1 Introduction

Two-dimensional convolution is one of the most frequently used operations in
image and video processing applications. Kernel size is usually limited to a small
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bounded range when general processors are used. It is therefore necessary to
find optimal designs to reduce hardware resources and power consumption while
supporting high speed operations for real-time applications. Convolution is a
mathematical operator which takes two functions, f and g, and produces a third
function, z, that in a sense represents the amount of overlap between f and a
reversed and translated version of g. The definition of 2D convolution O = W ∗I
in general can be expressed as

O(m, n) =
a1∑

j1=−a1

a2∑

j2=−a2

W (j1, j2) × I(m − j1, n − j2) (1)

where ai =(Ji-1)/2 for i = 1, 2 and W is the kernel function. The complexity
for 2D convolution (filter) operation in image processing applications is of the
order O(M ×N ×J1×J2) where M ×N corresponds to the x-y dimension of I/O
images and J1 × J2 is the size of the kernel. For instance, in a video processing
application, if the frame size is 1024× 1024 and the kernel size is 10×10, more
than 3 billion operations per second are required to support real-time processing
rate of 30 frames per second. Many researches have studied and presented var-
ious methods to implement the hardware architectures to perform convolution
operation for real time applications in the last two decades as described in [1] and
[2]. One of the most difficult challenges in designing the high speed convolution
architecture with a large kernel is to effectively utilize the hardware resources
and limited number of processing elements (PEs) to support real time process-
ing [3][4][5][6][7][8]. Algorithms such as [1][2][9][10][11][12] optimize the hardware
resources by generating the kernel coefficients dependent architectures. Such ar-
chitectures may be too specific and require the supports of reconfigurability
and external system to generate reconfiguration bit streams for uploading to
FPGAs in the event of changing the coefficients. Hence they are more suitable
for static kernel coefficients. In general, 2D convolution operations can be par-
titioned to a number of 1D convolutions [13] without specializing for separable
kernels [14]. Specifically, the partitioned 1D kernels are first convolved simultane-
ously on all columns of the input image and the partial results are accumulated
in a row-ordered fashion or vise versa. We presented log-domain computation to
significantly lower the complexity of the 2D convolution operation with quad-
rant symmetric architecture with support of programmable kernel coefficients
to suit different transfer functions. In this paper, we propose a modularized 2D
convolution and utilize distributed queue architecture for performance-resource
optimization where excessive performance can be utilized to minimize resource
requirement.

2 Concept of the Modularized 2D Convolution with
Quadrant Symmetric Property

From the definition of 2D convolution in (1), it can be partitioned to reflect its
symmetry. With slight modification to (1), equation (2) defines the convolution
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operation where the center pixel of the kernel is overlapped with center pixel of
the image under the window of consideration. The rearrangement of the equa-
tion is done by reducing the summation to half and by adding the terms to be
multiplied by the same kernel coefficients. For odd kernel size in equation (3),
corresponding locations in all four quadrants are added before multiplication.
The last term is outside the summation since the kernel coefficients on the axes
may be different from those reflected about the axes. For even kernel size, the
folding method is shown in equation (4). This folding scheme can be achieved
within the design with respect to particular architectural style and reduce pro-
cessing power to focus on a quarter of the kernel.

O(m, n) =
J1∑

j1=0

J2∑

j2=0

W (j1, j2) · I

(

m + j1 − J1

2
+ 1, n + j2 − J2

2
+ 1

)

(2)

O(m, n) =
J1
2 −1∑

j1=0

J2
2 −1∑

j2=0

W (j1, j2) · I
(
m ± j1 + J1

2 , n ± j2 + J2
2

)

+W
(

J1
2 , J2

2

)
· I(m, n)

(3)

O(m, n) =
J1−1

2∑

j1=0

J2−1
2∑

j2=0

W (j1, j2)×
⎡

⎢
⎢
⎣

I
(
m + j1 − J1

2 + 1, n + j2 − J2
2 + 1

)

+I
(
m − j1 + J1

2 , n + j2 − J2
2 + 1

)

+I
(
m + j1 − J1

2 + 1, n − j2 + J2
2

)

+I
(
m − j1 + J1

2 , n − j2 + J2
2

)

⎤

⎥
⎥
⎦

(4)

The log2 and inverse-log2 modules presented in [15] can further be employed to
replace the essential multiplications in (3) and (4) with additions. The logical log-
arithmic operators in (5) require very low hardware complexity. We generalized
the operators to handle input with fractions and derived very compact imple-
mentation without compromising hardware resource and performance compared
to conventional (unrolled pipelining) architectures which operate on integers
only [16], [17]. Eq. (5) states that the log2 scale of V can be calculated by con-
catenating the index IV of leading 1’s in V with the fractions (remaining bits
after Ith

V bit). The reversed process holds true as well, except the leading 1’s
and fractions, Lf , are shifted to the left by Li (integer of L) bits as shown
in (5).

log2(V ) ∼= {IV }+{(V − IV ) � IV } ⇔ log−1
2 (L) ∼= {1 	 Li}+{Lf 	 Li} (5)

For even kernels, (4) can be modularized to balance the performance and hard-
ware resource based on the constraint imposed by the application. For example
of a high-end FPGA design (usually has greater throughput rate than needed
by the application) deployed to low-end system, the excessive bandwidth can be
distributed for reuse to minimize the resource. Vise versa, a low-end design can



A Design Methodology for Performance-Resource Optimization 223

sustain very high throughput by increasing internal parallelism with more re-
source. The partitioning scheme can be defined by (6), where I4(.) is the folded
pixel value, and i is the ith partition for i in 0..
J2/(2f)� − 1, and f is the
desired reusability driven by application constraint. The design of modularized
architecture is discussed in section 3.

O(m, n) =
J1−1

2∑

j1=0

J2−1
2∑

j2=0

W (j1, j2) · I4(.)

=
�J2/(2f)�−1∑

i=0

⎧
⎨

⎩

(i+1)×f−1∑

j2=i×f

J1−1
2∑

j1=0

W (j1, j2) · I4(.)

⎫
⎬

⎭
, j2 ⊆ 0...J2−1

2

(6)

3 Architecture of Modularized 2D Convolution

3.1 Dataflow of Modularized Architecture

In this section, even kernel size is assumed for the discussion. The design also
applies to odd kernel size with minor difference. It is also assumed the data
comes in stream form (i.e. pixel by pixel fetched in real-time). Equation (4) is
translated into dataflow of the convolution architecture as illustrated in Fig. 1.
Incoming pixels pass through a series of line buffers (LBs) and fold at vertical
position. This folding corresponds to the equation (4) without modification. The
results from vertical folding are sent to a set of delay registers. The horizontal
folding takes account of the inherent delays of systolic architecture rather than
direct translation of (4). This is compensated by rerouting the folding points
accordingly as shown in Fig. 1. The processing bandwidth is shared by f hori-
zontally folded lines as reflected by the partition for each i in (6). The partial
results from horizontal folding are successively accumulated to the right side and
merged to form complete output.

3.2 Overview of Modularized 2D Convolution Architecture

Fig. 2 shows the block diagram of the quadrant symmetric convolution archi-
tecture with distributed storage queues. The LBs consist of J2-1 line delays and
create massive internal parallelism for concurrent processing. The folding is de-
termined at nodes LB(i)+LB(J2 − i) where i ranges from 0 to (J2-1)/2. The
resulting nodes are registered and fed into multiplexers (MUXes) for time-sliced
processing where each selected input occupies computational modules once ev-
ery f cycles. The horizontal folding, as illustrated in Fig. 1, is done accordingly
at the nodes MQ(0)+DQ(2k+1) (where MQ is the registered output of MUX
and DQ is the distributed storage queue for vertically folded data) rather than
straight from the equations due to the pipelining involved in horizontal fold-
ing. The registered results from horizontal folding are sent to shared PE arrays
(PEAs) for multiplication with the kernel coefficients and successive accumula-
tion. The multipliers are reduced by three quarters by simply performing the
folding procedure and by another f factor for sharing of processing bandwidth.
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Fig. 1. Dataflow version of folding illustrates the compensated delays induced in the
systolic architecture. The nodes involved with vertical folding at symmetric locations
are added together. The horizontal folding takes place in every other nodes.

Fig. 2. Block diagram for overall architecture of the modularized 2D convolution with
quadrant symmetric property in the kernel

The overall output is computed by merging results of the shared PEAs through
pipelined adder tree (PAT). The original pixel values can be obtained, along
with convolved data, through synchronized registers (SyncRegs).
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Fig. 3. Design of Data Buffer Unit with DPRAMs

3.3 Data Buffer Unit

The data buffer unit (DBU), which generates the internal parallelism is imple-
mented with the dual port RAMs (DPRAMs) as shown in Fig. 3. One set of
DPRAMs is utilized to form LBs and store just enough lines of image to create
massive internal parallelism for concurrent processing. The pixels are fetched to
the data buffer in raster-scan fashion which requires unity bandwidth suitable
for real time streaming applications in video processing. The DPRAM based
implementation has advantage of significantly simplifying the address generator
compared to commonly known first-in-first-out (FIFO) based approach. Tracking
of items during transient stage is eliminated as opposed to LBs implemented by
FIFOs. The address generator with the DPRAMs based implementation makes
scalability of DBU consistent and simple. It consists of two counters to automat-
ically keep track of the memory locations to insert and read the data to internal
parallel data bus (PDB). Data bus A (DBA) of (J2-1) ×P bits wide, which is
formed with just enough number of DPRAMs in parallel, is used to insert pixel
values through write-back paths to the memory location designated by address
bus A (ABA). P is 8 bits for 8-bit pixel resolution. The data bus B (DBB) is
used to read the pixel values onto PDB and write to the write-back paths. Only
one address generator is necessary in buffering scheme. The DBU is only active
once every f cycles. The vertical folding and modularizing scheme is discussed
next.

3.4 Modularized Processing

The vertical folding is accomplished by pre-adding the nodes, LB(i)+LB(J 2−i),
on the PDB where i ranges from 0 to (J2-1)/2 for even size kernels. The aligned
results from vertical folding form a group of V-folded bus (VB) with the width
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of (P+1)×f bits. Each VB is connected to an array of P+1 MUXes of f -to-1
type in such a way that the binary select lines of the MUXes incrementally ac-
tivate appropriate data from PDB for time-sliced processing. Hence, each active
ordered bus of P+1 bits wide will periodically occupy the PEA on one of those
f time slots. The routing scheme shown in Fig. 2 and Fig. 4 (left) from VB to
MQ can be generalized as

V Bi {υ} ⇒ MQi

{
υ, υ = (P + 1)f − 1
{υ × (P + 1)} % {(P + 1)f − 1} , otherwise

}

(7)

for all i in (6), υ= 0..(P+1) ×f−1, where υ is the index to the VB which is
mapped to the inputs of MUX array, and % denotes the modulo operation. For
all select lines of MUXes, only one common counter suffices the time slicing
necessary according to the partitioned convolution equation in (6).

3.5 Queuing of Active VB Data

The time-sliced data on MQ i output is combined with the circular queue DQ i,
implemented with f registers of (J1 − 1)×(P +1)bits wide as illustrated in Fig. 4
(right). The merged signals MDQi[0..J1 − 1] = [MQi, DQi[f ]] are connected to
horizontal folding scheme described by

HBi (k) =

⎧
⎨

⎩

MDQi[0] + MDQi[2k], for even J1, ∀k
MDQi[0] + MDQi[2k + 1], for odd J1, k �= 0
MDQi[0], for odd J1, k=0

(8)

to form horizontally folded bus (HB). The k ranges from 0 to 
J1/2�−1 for both
even and odd kernels (i.e. J1 is even number). The last P+1 bits of MDQi are
dropped out with the remaining bits clocked back into the DQi[0] register, mim-
icking the shifting operation of P+1 bits shift registers. Hence, the functional
equivalence of fully parallel approach in [18] can be achieved in time-sliced fash-
ion without introducing additional hardware components. The architecture of
processing elements is discussed in the next section.

3.6 Processing Elements in PEAs

The design of each PE utilizes the log-domain computation to eliminate the need
of hardware multipliers [15], [18]. The data from H-fold register is converted to
log2 scale as shown in Fig. 5 (left) and added with the output of log2 scaled
kernel coefficients queue (LKC) implemented with register set which holds the f
desired spatial samples of the transfer functions according to the partitioned in
(6). The result from last stage is converted back to linear scale with range check
(RC). If the overflow or underflow occurs, the holding register of this pipeline
stage is set or clear, respectively. Setting and clearing contribute the max and
min values representable to P+2 bits (resolution of the HB i(k) data is 10 bits
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Fig. 4. Left: routing scheme for vertically folded data, Right: feedback path of DQi

Fig. 5. Left: design of PE, Right: pipelined log2 module

for 8-bit image) register. The output of this stage is successively accumulated
along the accumulation line (ACCi) and queued by f registers at the output
(ACCo) to synchronize the computed partial results correctly to the assigned
time-slice. ‘ACCi’ is set to 0’s for the leftmost PE in each PEA. For the right-
most PE, the output buffer at ‘ACCo’ is replaced with cyclic adder for cyclic
accumulation of the results produced by the PEAs. Cyclic adder is similar to con-
ventional accumulator used in multiply-accumulate (MAC) unit with periodic
reset signal. Cyclic adder sums up the results produced by each f -cycle inter-
val. The output of LKC is looped back to its input through 2-to-1 MUX. Thus,
the coefficients stored and rotated in LKC can be synchronized to appropriate
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time-slice. The other input on the MUX is connected to the coefficient input
bus, ‘LKCi’ from its neighbor PE. With the coefficient output, ‘LKCo’, an inter-
chained bus can be organized for streamed initialization of kernel coefficients for
different convolution masks. The PE can easily be modified to support negative
inputs from horizontal folding. This is done by separating out the sign bit and
exclusively OR-ed the registered sign bit with the sign from output of LKC
queue. Hence if either one is negative, a subtraction is carried out alone the
accumulation line. Otherwise, addition is performed. The log2 architecture shown
in Fig. 5 (right) is very similar to [15], except full precision is used and registers
are introduced to approximately double the performance. The maximum logic
delay is reduced to single component and makes no sense to pipeline further.

4 Simulation and Error Analysis

4.1 Simulation

Both low-pass and high-pass transfer functions are applied to convolve with 8-bit
grayscale images (336×336) in the simulation. The log2 and inverse-log2 modules
are optimized based on the resolution of the test images shown in Fig. 6a and 6b.
Fig. 6a is derived from Fig. 6b by adding Gaussian noise withμ = 0andσ2 = 0.02.
Each test image is fetched into the architecture pixel by pixel in raster-scan
fashion. After transient state, the outputs become available and are collected for
error analysis. The resulting images produced by the Matlab software are shown
in Fig. 6c and 6d for noise filtering and edge detection kernels, respectively. The
corresponding output images from hardware simulation are shown in Fig. 6e
and 6f. Both images are visually identical to Fig. 6c and 6d. Error Analysis is
given next to determine quantitatively the degree of difference.

4.2 Error Analysis

Typical histograms of the error between software algorithm and hardware sim-
ulation are shown in Fig. 7a and 7b for the test images. The error produced in
noise filtering illustrated in Fig. 7a has average error of 2.19 pixel intensity with
peak of 22.23. The average error for applying the edge detection kernel in Fig. 7b
is 4.17. Simulation with large set of images shows majority of the errors in this
design is less than 5 pixel intensities. The peak errors are generally larger for
high-pass transfer functions since the kernel coefficients typically have broader
range of sample values. Images with evenly distributed histograms also have ten-
dency to increase the peak error while contribute less to average error. The error
measure includes the fact that the hardware simulation is bounded to approxi-
mation error and specific number of bits representable in the architecture where
the software algorithm is free from these constraints. The performance-resource
relationship is characterized in section 5.
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Fig. 6. (a) and (b) are test images for convolution operation with low-pass and high-
pass transfer functions, respectively. (c) and (d) are the output images produced by
Matlab software. (e) and (f) are the results from hardware simulation.
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Fig. 7. Histograms of error for (a) noise filtering and (b) edge detection kernels. The
corresponding average errors are 2.19 and 4.17 pixel intensities with the peak er-
ror at 22.23 and 70.97. The reason such large peak errors exist is that the range
of kernel coefficients is broader with well distributed histogram on the test im-
ages.
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5 Performance-Resource Optimization

5.1 Hardware Utilization of Minimum PEA Configuration

The hardware resource utilization is characterized based on the Xilinx’s Virtex
II XC2V2000-4ff896 FPGA on the multimedia platform and the Integrated Soft-
ware Environment (ISE). The particular FPGA chip we target has 10,752 logic
slices, 21,504 flip-flops (FFs), 21,504 lookup tables (4-input LUTs), 56 block
RAMs (BRAMs), and 56 embedded 18-bit signed multipliers in hardware; how-
ever, we do not utilize the built-in multipliers. The resource allocation for various
sizes of the kernels with minimum PEA is shown in Table 1. For 16×16 kernels,
the computational power is 8 log-domain additions instead of 256 multiplications
with fully parallel approach. The maximum windows can be utilized on target
FPGA is mainly constraint by the storage capacity rather than the LUTs. In
addition to trading the performance for resource, the design utilizes approxi-
mately 60% less hardware resource when compared to the quadrant symmetric
architecture which implements fully pipelined multipliers.

5.2 Performance Evaluation of Minimum PEA Configuration

The critical timing analysis of Xilinx’s ISE shows that the 190.922MOPS of the
PEAis themostoptimal throughputachievablewith themaximumclock frequency
of 190.922 MHz. The overall output of convolution architecture for various sizes is
shown in the last column of Table 1. It should be clear that the performance de-
creases with large kernels. The propagation delay of log-based architecture is com-
parable to Xilinx’s enhanced multiplier-based architecture which is 0.21ns faster.
Further evaluation of pipelining the critical path suggests that increasing the level
of pipelining does not gain significant throughput rate. Given 1024×1024 image
frame, it can process over 45.5 frames per second without frame buffering with 8×8
kernel. Characterization of optimization scheme is discussed next.

5.3 Characterization of Optimization Scheme

In this section, we characterize the relationship between the performance and the
resource allocation of the architecture in various configurations. We first analyze

Table 1. Hardware resource utilization for various sizes of the kernels with its corre-
sponding performance indicates the overall effectiveness of the architecture

Kernel Size Logic Slices Slice FFs LUTs BRAMs Perf (MOPS)
4×4 3% 2% 2% 2 95.46

8×8 6% 5% 3% 4 47.73

10×10 9% 7% 4% 4 38.18

12×12 12% 10% 4% 5 31.82

13×13 15% 13% 5% 6 27.28

15×15 19% 16% 6% 7 23.87

16×16 19% 17% 6% 7 23.87



232 M.Z. Zhang and V.K. Asari

Fig. 8. The impact of reuse of PEAs over the performance and resource utilization of
the architecture

Fig. 9. The proportionality between the performance and resource allocation for vari-
ous sizes of kernels

the impact of the parallelism on performance and resource requirement with fixed
J1 and J2 attributes, as graphed in Fig. 8. The x-axis indicates the frequency
of reuse of PEAs (i.e. the f attribute in(6)) while the y-axis is the resource and
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performance quantities normalized by the design parameters configured to the
fullest parallelism. Fig. 8 suggests that the resource utilization for even and odd
sizes of kernels has minor difference. A more interesting point should be noted is
that the performance is directly proportional to the utilization of the LUTs with
varying f attribute. The Slices also tend to increase with larger f since storage
capacity must be increased for the DQ queues, LKC queues, and output queues
of the PEs. While the performance-resource has exponential relationship to the
kernel size, its trading is nearly linear with f as depicted in Fig. 9. For example,
the ratio for the LUTs of fully parallel and reused configurations is about 8 (f
=8) while performance of fully reused architecture is reduced by 1/f .

6 Conclusion

A technique for optimization of 2D convolution architecture with quadrant sym-
metric kernels is being presented in this paper to balance the performance and
hardware resource based on the constraints imposed by the application. The de-
sign regularizes the reusability of the core components determined by application
specification. We also demonstrated the generalized procedure for realization of
the low complexity architecture with effective data path routing scheme and
the assistance of logarithmic estimation modules. For the implementation highly
limited to the resource, we showed that the architecture is able to sustain 45.5
1024×1024 frames per second (fps), which is more than real-time criteria of 30
fps, with minimum resource of 6% Slices and 3% LUTs for 8×8 kernels in a
Xilinx’s Virtex XC2V2000-4ff896 FPGA at maximum clock frequency of 190.92
MHz. We also determined that the optimization of the performance and resource
has a relationship of 1/f , where the f is evaluated by the application. With larger
f , both normalized performance and resource are reduced to 1/f .
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Abstract. JPEG codec in portable device has become a popular tech-
nique nowadays. Because the portable device is battery powered, re-
ducing power dissipation is practical. In this paper, a low power design
technique for implementing JPEG Huffman decoder is presented, in
which the Huffman table is divided into two partitions. As the main
contribution, we propose a low power Huffman decoder with bipartition
lookup table to reduce the power consumption in JPEG. Experimental
results of the gate level simulation show that the proposed method can
reduce the power consumption by 15% on average compared to general
Huffman decoder.

Keywords: Huffman, Decoding, Low power, Bipartition.

1 Introduction

JPEG image compression [1] is one of the most commonly used standards for
communication and storage applications. It is a block-based system whose struc-
ture consists of three major steps: 2-D discrete cosine transformation (DCT),
quantization, and entropy coding.

The entropy coding for JPEG is a combination of run-length coding (RLC)
and Huffman coding [2]. The basic idea of the Huffman code is to use variable-
length code to compress input symbols based on the probability of the sym-
bol’s occurrence. The most frequently used symbols are represented with shorter
codes, while less frequently occurring symbols have a longer representation. Ac-
cording to the probability of the symbol’s occurrence, we can use the bipartition
architecture [3], [4] to divide the lookup table.

JPEG compression in portable device has become a popular technique nowa-
days, such as laptop computer, personal digital assistant (PDA) and cellular
phone. Because these applications are battery powered, reducing power dissi-
pation is practical. Most papers only discuss the memory usage efficiency and
decoding speed on Huffman decoder, such as [5], [6], [7] etc. In this paper, we
propose a bipartition lookup table for JPEG Huffman decoder which is based on
the concept of the bipartition architecture and the parallel VLC decoding [7],
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[8], [9] together with canonical codes [10], [11] in the design of Huffman decoder
to reduce power consumption.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the background of our method. The proposed technique and the design of VLSI
architecture using this proposed method are presented in Section 3. We present
experimental results in Section 4. Section 5 is conclusion.

2 Background

2.1 Bipartition Architecture

Consider the circuit of Fig. 1. A pipelined stage is a combinational logic block
separated by distinct registers. The bipartition architecture [3], [4] is shown in
Fig. 2. The combinational logic portion in Fig. 1 is partitioned into two groups.
One that includes some states of high activity is small called Group1 and the
other that includes the remainder of low activity is big called Group2. The two
groups work in turns. The GCB is a precomputation block for only one block is
working at the same time.

combinational 
block

R
egister

R
egister

CLK

IN OUT

Fig. 1. A combinational pipelined circuit

GCB

Group1

Group2

CLK

Latch

R
egister

R
egister

Latch
SEL

IN

OUTCLK1

CLK2

MUX

R
egister

Fig. 2. Bipartition architecture

2.2 Parallel VLC Decoding

The parallel VLC decoder architecture provides the constant-output-rate VLC
decoding. It mainly consists of two units: a barrel shifter for the alignment of
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Fig. 3. Parallel VLC decoding [8]

incoming codeword and a lookup table for generation of output symbols and
codeword length.

A block diagram of a parallel VLC decoder is shown in Fig. 3 [8]. The func-
tions of its major components are described as follows. The LUT matches a code-
word and outputs the corresponding symbol and codeword length. The codeword
length is accumulated by the barrel shifter BS1 and the register R2. The barrel
shifter BS0 then shifts the next codeword according to this accumulated code-
word length. The input data are stored in the registers R0 and R1. R2 represents
the number of decoded bits in R1. It controls the barrel shifter BS0.

3 Proposed Scheme

In this Section, a new method to rearrange and partition the Huffman table
for the JPEG Huffman decoder is proposed. There are two merits in this new
method. First, it makes no change at the encoding end because the Huffman table
used in the decoding end is the original one. Secondly, the power consumption
will be reduced due to the bipartition lookup table technique.

3.1 Bipartition Lookup Table Technique

The property of Huffman codes [1] that belongs to variable length code (VLC)
[9] is that the shorter codewords are assigned to symbols which are frequent
and the longer codewords are assigned to symbols which are rare. There are 125
codewords with the longest length in the 162 codewords on the Huffman table
for JPEG standard as shown in Table 1. These codewords will cause wasting
power with the look-up table method. These codewords consists of first 9 bits
of the number of 1s and the remaining other 7 bits. Here we partition these
codewords which the first 9 bits are the number of 1s into LUT1. On the other
hand, the other codewords with shorter length are partitioned into LUT0.
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Table 1. Huffman table for JPEG

Codeword Symbol CL

00 0/1 2
01 0/2 2
100 0/3 3
1010 EOB 4
1011 0/4 4
1100 1/1 4
11010 0/5 5
11011 2/1 5
111000 0/6 6
111001 1/2 6
...

...
...

11111111010 D/1 11
111111110110 E/1 12
111111110111 F/0 12
111111111000000 8/2 15
1111111110000010 0/9 16
1111111110000011 0/A 16
...

...
...

1111111111111101 F/9 16
1111111111111110 F/A 16
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Fig. 4. Probabilities of Huffman table for JPEG

Fig. 4 shows the probabilities of symbols in Huffman table for JPEG. As we
can see from this figure, the most frequently symbols are in the left side of the
broken line and the less frequently symbols are in the right side. Therefore, we
divide the lookup table into two partitions.

The flowchart of the proposed method is shown in Fig. 5. If “End of File”
is reached, the Huffman decoding process is completed; otherwise, the Huffman
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Fig. 5. Flowchart of proposed method

decoder using the proposed method will proceed following Steps 1–3, which are
discussed in detail below.

Step 1: Determine the lookup table.
Given a coded Huffman codeword, the first 9 bits are read to determine directly
the LUT select bit through the LUT selector unit. If the first 9 bits are all 1s, the
LUT select bit will be 1 and the lookup table LUT1 will be activated. Otherwise,
the LUT select bit will be 0 and the lookup table LUT0 will be activated.

Step 2: Obtain the corresponding symbol and codeword length.
The LUT consists of two parts, the first part is the run/length symbol and the
second part is codeword length. The corresponding symbol and codeword length
will be obtained in selected LUT after step 1.

Step 3: Output symbol and codeword length.
Finally, obtain the correct symbol and codeword length from the selected LUT.
The symbol is outputted to the next stage of the JPEG decoding and the codeword
length is received by the codeword shifter block to shift to the next codeword.

3.2 VLSI Architecture for Bipartition Lookup Table Technique

The proposed method described in Section 3.1 can be mapped efficiently to a
VLSI architecture. There are three major blocks in this architecture, namely,
the codeword shifter block, the bipartition decoding block, and the symbol out-
put block, as shown in Fig. 6. First, the codeword shifter block is designed to
accumulate codeword length and shift to the next codeword according to the
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accumulated codeword length. Next, the bipartition decoding block receives the
parallel data and then yields a LUT select bit to select the correct lookup table
to extract the symbol and codeword length as mentioned in Steps 1 and Step 2.
The third block, the Symbol output block, determines the output symbol and
codeword length from the selected lookup table. The detailed descriptions of
these three architectures are given in Sections 3.2.1–3.2.3.

Codeword shifter 
block

Codeword 16
13

13

5

13

Code Length

<R,L- Length> 
code

LUT Select

Bipartition decoding 
block

Symbol output  
block

Fig. 6. Huffman decoder using proposed method

3.2.1 Codeword Shifter Block
The codeword shifter block consists of codeword register, bits barrel shifter and
accumulator as shown in Fig. 7. The input data are stored in codeword register.
The codeword length is accumulated by accumulator. The new accumulated
codeword length controls the barrel shifter to shift to the correct position for
the next decoding cycle.

Barrel 
Shifter

16

Accumulator
Carry

Sum

32 bits
Codeword 

register

16

5

Codeword

Code Length
5

16 bits 
Codeword

Fig. 7. Codeword shifter block

3.2.2 Bipartition Decoding Block
The bipartition decoding block is the key block of our method. First, this block
receives the 16-bit parallel data from the codeword shifter block and decides
the LUT select bit. The LUT select bit determines which lookup table, LUT0
or LUT1, will be used to extract the symbol and codeword length. If the LUT
select bit is 0, the lookup table LUT0 will be selected. Otherwise, the lookup
table LUT1 will be selected when the LUT select bit is 1. A schematic diagram
representing the bipartition decoding block is shown in Fig. 8.
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3.2.3 Symbol Output Block
The Symbol output block consists of a multiplexer, latch and 13 bits output regis-
ter as shown in Fig. 9. In this block, the LUT select bit controls the multiplexer to
select the correct output. Once the output is determined, the accumulator in the
codeword shifter block will obtain the codeword length from the output register.
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Code Length

<R,L- Length> 
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Output 
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13

Fig. 9. Symbol output block

4 Experiments

4.1 Experimental Setup

To compare the effectiveness of our proposed method and the general parallel
Huffman decoder [5], [6], we synthesize these two methods using Synopsys Design
compiler, with a 0.13um, 1.3-V technology library from TSMC and the power
consumption is obtained by Synopsys PrimePower. The test images are shown
in Fig. 10 and the codewords belong to which LUT, LUT0 or LUT1, are shown
in Table 2.
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Goldhill Jet Lena Mandril PeppersBarbara

Fig. 10. Test images

Table 2. Huffman table for JPEG

Image Total coldewords Codewords belong
to the LUT0

Codewords belong
to the LUT1

Barbara 61580 61316 (99.57%) 264 (0.43%)
Goldhill 61299 61224 (99.88%) 75 (0.12%)
Jet 44228 44023 (99.5%) 205 (0.5%)
Lena 44526 44482 (99.9%) 44 (0.1%)
Mandril 95279 95137 (99.85%) 142 (0.15%)
Peppers 46767 46656 (99.76%) 111 (0.24%)

4.2 Experimental Results

Fig. 11 shows experimental results that compare our bipartition technique with
the general method. The first bar for each test image represents the result of
power consumption using general parallel Huffman decoder. The second bar
shows the result of power consumption using bipartition parallel Huffman de-
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Fig. 11. Power consumption of the general method and bipartition technique
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coder. Our bipartition technique and the general method both were executed
with the same predetermined test image.

As we can see from the results, our method reduces the power consumption
by 15% on average.

5 Conclusion

In this paper, we have proposed a power-efficient method to reduce the decod-
ing power consumption for Huffman decoder of JPEG. The proposed method
reduces decoding power at the bipartition lookup table technique. Our scheme
reduces the power consumption of Huffman decoder of JPEG by 15% on av-
erage compared with the general method. Our experimental results show that
bipartition LUT help improve the power reduction of JPEG Huffman decoder
effectively
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Abstract. To retarget sequential image processing algorithm written
in sequential languages (e.g. C) to processors with multimedia exten-
sions and multimedia-specific embedded microprocessors is an open issue.
Image processing algorithms are inherently with sub-word parallelism
(SWP) But current compilers are not able to exploit it by locating SWP
within a basic block. This paper proposes a program representation and
pattern-matching approach for generating an explicit SWP specification
from sequential source code. The representation is based on an exten-
sion of the multidimensional synchronous dataflow (MDSDF) model of
computation. For both the compiler and source programs should not
be user-modified, we extend compiler’s functionality by adding a spe-
cialized pattern-library. After data-flow and control-flow analysis with
pattern matching, the generated SWFG (Sub-Word Flow Graph) can be
used as an intermediate representation for the next step of compiler for
SWP instruction selection and code generation.

Keywords: image-processing, SWP, pattern matching, SWFGcode se-
lection.

1 Introduction

Nowadays, multimedia applications are widely used. Characteristics of multime-
dia applications bring a special micro-processing in processor [1]. As a conse-
quence, the high processing power which used to be needed only for research or
military projects is now required at home by millions of users. Instead of design-
ing and developing SIMD arrays with expensive, specialized coprocessors, many
microprocessor vendors add multimedia extensions to processors, designed to
complement the “regula” instructions and improve the performances in today’s
multimedia applications. Besides, many DSP designers begin to develop em-
bedded specific microprocessors for processing multimedia applications. Image-
processing programs are inherently parallel and small-data. More memories
included and number of calculation units and/or their functionality increases,
raises complexity in processor manufacturing. An effective method to exploit
available functionality for media applications is sub-word parallelism (SWP).
� Sponsored by National Natural Science Foundation of China under Grant

NO.60173040.

L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 244–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A SWP Specification for Sequential Image Processing Algorithms 245

1.1 Common Issues in SWP Compilation

SWP It allows the parallel calculation of 2, 4, or 8 similar operations in one
calculation unit (SWP unit). Fig. 1 (a) shows an example of 32-bit SWP pro-
cessing.

Operation  full-lengh words

(a) 32-bit SWP processing

SWP function 
unit

Result  full-lengh words

common op vs.subword op

(b) SWP unit with sub-units

OP OP

32bit 8bit 8bit8bit8bit

32bit 32bit 8bit 8bit8bit8bit

Fig. 1. SWP processing and SWP unit with sub-units

Packing/unpacking. As shown in Fig. 1 (b), the operands (sub-words, data)
in SWP function unit have to be packed from two full-length operation words.
After calculation in the SWP function unit in parallel, the results are unpacked
in a full-length word.

SWP instruction utilization. Current approaches suffer from shortcomings
like lack of portability and high cost of software development. Thus, VLIW-
based media architecture is believed to be fit for exploiting SWP, with compilers
ability of parallelism exploitation and dynamically schedule, besides its flexible
datapath.

1.2 Existing Compilation Techniques

The current problem is that, on one hand we have modern multimedia execution
hardware, but on the other hand, the software and the general compilers are not
able to automatically exploit this inherent parallelism and can not make full use
of the multimedia instruction set.

Some researches are explored to find a way for compiling techniques. Some
of them are techniques used for SIMD processors to generate optimized code.
One such technique, known as vectorization [2,3], can indeed give interesting
results when implemented for MMX [2] or VIS [4,3]. The main motivation behind
vectorization is that in computation intensive applications such as multimedia
applications where some processing is applied to large data sets containing small
elements-loops are the most critical part of the code and should present a large
amount of parallelism. Thus, one solution to optimize the whole application
is to detect these loops that can be parallelized, and transform them into a
vector operation, operating on infinite length vectors. This operation is then
transformed in a loop using the SWP operations.

Another well-known compiler effort came from Larsen who has implemented
a superword parallelism module in SUIF [5]. They adopt a heuristic approach
which can produce good results in a very reasonable time. An advantage of
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SLP over vectorization is that it does not require large amount of parallelism
to be profitable. SLP can be seen as a restricted form of ILP. Indeed, executing
the same instruction on all subwords of a packed register is about the same as
executing a few instructions at the same time, each performing the operation on
one of the subwords. However, the problem is that there may be several different
packing possibilities within the same basic block. S. Larsen proposed in [5] an
optimal algorithm to extract SLP. Unfortunately, his approach is far too complex
to be computable, which is why he also gives a heuristic.

An interesting approach to parallelization of code is that taken by
M. Boekhold, I. Karkowski and H. Corporaal in [6]. Instead of having a compiler
with multiple passes, they propose to have a single transformation engine, which
can replace code matching a specific pattern by another code fragment, provided
some use-provided conditions are respected. In this way, the parallelization can
be extracted quite simply, by providing the correct transformation specifications.
PAP [7] and PARAMAT [8] have employed program recognition to extract par-
allelism from loop kernels. The PAP system, targeted at distributed memory
architectures, creates an annotated program dependence graph [9] representing
the loop, and then performs pattern-matching to identify groups of structures
s concepts. Sets of concepts can then be aggregated into higher-level concepts
and, eventually, transformed into parallelized code. PARAMAT is similar, but
uses abstract syntax trees as the basic program representation. Both PAP and
PARAMAT attempt to identify sequential algorithms in the code and replace
them with well-known parallel implementations of those algorithms.

1.3 Our Approach

Our research goal is to retarget sequential image processing algorithm written
in sequential languages (e.g. C) to processor with multimedia extensions and
multimedia-specific embedded microprocessors, without modifying source pro-
grams. To implement it, we design a compiler framework consisting of some
passes. In this compiler framework, a key part is specialized knowledge-based
pattern library and an intermediate representation- SWFG (Sub-Word Flow
Graph). After pattern matching and recognition, parallelism candidates are ex-
plicitly represented amd SWP instruction selection can be realized.

Approach described in this paper is based on loop analysis and dependence
analysis. But differs from current methods, our approach tends to present explicit
parallelism, be available for embedded microprocessor instead of SIMD arrays
and provide a flexible way to retarget sequential programs to parallel execution.
SWFG will be described in section 2 and the experiment design in section 3.

2 Sub-Word Flow Graph

2.1 Bitwise Data Flow Analysis

Data flow analysis helps us to determine inner loop. We use loop normalization
to ensure that the iteration space of the loops is regular and the process of
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dependence verification is simple. For a C compiler the lower bounds are set to
0 and the step is set to 1, making amount of all loops iterative executed. And
the old induced variables are replaced by the affine function with new induced
variables. The index expressions and the lower bounds are modified accordingly.
A small loop with lower bound 2 is shown as follows.

We use lattice as a formal ordering of the internal data structure in data
flow analysis, which traditionally can not yield accurate results on arithmetic
operations or support precise arithmetic analysis.

We select lattice of propagating data-ranges as the structure in data flow
analysis. In this structure, a data range is a single connected subrange of the
integers from a lower bound to an upper bound. Thus a data-range keeps track
of a variable’s lower and upper bounds. Because only a single range is used to
represent all possible values for a variable, this representation does not permit the
elimination of low-order bits. However, it does allow us to operate on arithmetic
expressions precisely.

The propagation of data range lattice is shown in Fig. 2. Lattice represents
the life ranges of values that can be assigned to a variable and is lifted from
a bottom element. Definitions and computations of the value in this lattice are
listed in Table 1. Take the code of motion estimation kernel of the MPEG-4
decoder algorithm as an example, after analysis, we find true dependence and
output dependence in this code segment. The data-dependence graph of this
loop is illustrated in Fig. 3 left. After loop-distribution, the strong connected
component is generated, as shown in Fig. 3 (right).

A strong connected component of a dependence graph is a maximal set of
vertices in which there is a directed path between every pair of vertices in the
set. A non-singleton SCC of a data dependence graph represents a maximum
set of statements that are involved in a dependence cycle. We can fine out that

)min(min INTINT

)max(max INTINT

maxmin,INTINTDR

1, maxmin INTINT maxmin ,1INTINT

2, maxmin INTINT 1,1 maxmin INTINT maxmin ,2 INTINT

minmin,INTINT 1,1 minmin INTINT 1,1 0,0 1,1 1,1 maxmax INTINT maxmax,INTINT... ...

DR

Fig. 2. Lattice representing the life ranges of values that can be assigned to a variable
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Table 1. Lattice definition and value computation

⊥DR⊥ The value of subword’s life range that have not been initialized

TDR⊥ The value that can not be statically determined. It is the upper bound
of subwords-set’s life range.

∪ Life range union. The union over the single connected subrange of the
integers where 〈al, ah〉 ∩ 〈bl, bh〉 = 〈min(al, bl), max(ah, bh)〉

∩ Life range intersection. The set of all integers in both subranges
〈al, ah〉 ∩ 〈bl, bh〉 = 〈max(al, bl), min(ah, bh)〉

S1

S2

SCC1: S1

SCC2: S2

tDC :]i[

Fig. 3. Data-dependence graph and strong connected components

statement S1 forms a singleton SCC (without a self-arc). Hence, S1 can be
executed in subword way. Statement S2 is self-dependent during the loop. To
eliminate this dependence, we can do loop-unrolling on S2.

The loop is first unrolled the correct number of times depending on the type
of the operands. If register is 32-bit, the loop is unrolled 2 times for short int
operands. Then the loop body is inspected and acyclic instruction scheduling is
performed in order to have all instances of the same loop instruction grouped
together. Hence, S2 can also be executed in subword way.

2.2 SWFG Representation

Our SWFG representation is based on the multidimensional synchronous
dataflow (MDSDF ) model of computation (MOC) [10]. In SDF models, each
node is a process that produces (consumes) tokens on its output (input) arcs
at integer rates. These integer rates of production and consumption allow the
execution rates of each process to be statically determined, leading to a static
scheduling of all processes. SDF models are valuable in modeling signal process-
ing applications and generating efficient code for programmable embedded DSP
processors [11]. MDSDF augments SDF with multielement, multidimensional
tokens. These tokens provide a useful representation for image processing algo-
rithms, which often operate on regular subregions of an image, such as rows,
columns, and tiled blocks.

Our SWFG representation extends the MDSDF representation in two ways.
The first is that edge annotations include the bounds information, e.g.,
(1:8:1, 0:8:2) specifies a two-dimensional token with eight elements in the first
dimension, beginning at position one, and having a stride of one. Similarly, the
second dimension has eight elements, begins at position zero, and has a stride of
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two between each element. This preserves information from the original source
concerning loop iteration ranges and array boundary conditions. The second is
the notation of operation area, which explicitly describes the parallel operations
on separated units of different sub-word.

2.3 Initial Representation of Source Program

To facilitate recognition, the C source is parsed and translated into an interme-
diate representation, which is a flow graph with the following node types:

Basic computational operators: addition, multiplication, logical operations,
comparison operations, etc. These are illustrated by circles in the figures in this
paper.

Memory operators: load and store, with appropriate variants depending on
whether the access is through a pointer, a singly subscripted array, or a doubly
subscripted array. These are indicated by rectangles in our figures.

Control blocks: abstractions over embedded loops and conditionals. In our
graph, control conditions are encapsulated in control blocks. These are indicated
by adding named ports on rectangles in our figures.

Interface: input and output nodes, representing data flow into or out of the
flow graph. These are illustrated by rounded rectangles in this paper.

An example is shown in Fig. 4.

var_x: in

var_y: in

1

control_block

i: dest

var_v: out

var_z: in

A: src1 B: src2 C: dest

A=vax_x+1;
B=var_y;
C=var_z ;
For (i=0 ;i<Range ;i++)
{

Tmp=*(B+i);
C[i]=A*tmp;

}
var_w=i ;

Fig. 4. source codes and its flow graph representation

2.4 Program Code

There are three main patterns in the pattern library, as described in Table 2.
Formats like “for (i=0; i≤R; i++)” belong to COUNT PATTER. Reading and
writing multiple SWP units must pay attention to subscripts- singly subscripted
or doubly subscripted. An example is as follows.
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for(i=B1;i<R1;i+=S1)
for(j=B2;j<R2;j+=S2){
...=swp[i];/*SWP-read with single-subscripted */
...=swp[i][j] /*SWP-read with double-subscripted*/ }

Table 2. Pattern library

PATTERN DESCRIPTION
COUNT PATTERN In the named ports of control blocks, illustrating loops

and control conditions

SWP-READ In processing SWP computations, reading multiple SWP
units

SWP-WRITE In processing SWP computations, writing multiple SWP
units

2.5 Dimension Notations

For edges in SWFG, there are notations on each dimension and processing at-
tribute.

base::(Begin1:Range1:Step1:Lo/Hi,Begin2:Range2:Step2:Lo/Hi)

base: base address variable for sub-word area, which can be noted for pointer
and array variables in source code.

Begin: the first element position of the loop control condition

Range: number of elements in a sub-word area

Step: stride in increasing or decreasing

Lo/Hi: processing format on sub-word area, low-part or high-part. Lo/Hi no-
tation is specially important for loop-unrolling and assurance of alignment. An
example is shown as follows in Table 3. We can pack these statements and process
in parallel.

Table 3. Example of loop unrolling

for(i=1;i≤64; i=i+1) After loop-unrolling 4 times for (i=1; i≤64; i=i+4) {
A[i+4] = A[i] + B[i]; A[i+4] = A[i+0] + B[i+0];

A[i+5] = A[i+1] + B[i+1];
A[i+6] = A[i+2] + B[i+2];
A[i+7] = A[i+3] + B[i+3];}

3 Constructing a Compiling Framework

3.1 Algorithm for Pattern Matching

Pattern-recognition is applied to the initial program representation to identify
patterns (as subgraphs) implementing memory accesses to SWP regions. Once
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identified, the subgraphs are replaced by the single high-level node, abstracting
away the implementation details. Our pattern matching algorithm belongs to
graph-based pattern recognition. The algorithm is illustrated in Table 4.

Table 4. Algorithm for pattern-recognition

STEP1 Find innermost for loop
statement ::=
expr {expr} for-statement | expr {expr}
/*const-list is number of SWP units,4 or 8 preferably*/

STEP2 Creating list of SWP type variables
array-type-variable ::=
short | int | float
identifier ’[’const-list’]’
/*Ivalue : :=identifier| *expr| lvalue| primary [expr] */

STEP3 Checking syntax of for statement
for-statement ::=
’for’ ’ ( lvalue = constl;
lvalue rel-op const2;
(++ | - - | lvalue |
lvalue (++ | - -) ’ ) ’ statement;
/*Ivalue : := identifier| *expr| lvalue| primary [expr]*/

STEP4 Analyzing list of expressions
expr ::= primary |
( + | - | ! | ” | * | & ) expr |
expr ? expr: expr
/*primary ::= identifier| constant | (expr ) | primary [expr]*/

STEP5 Pattern-matching
Matching the patterns described in Table 1 based on their structural
characteristics.
if ((identifier-in-expr == SWP-type-variable) and (patterns-in-the-
Table 1))
make-list-of-parallel statement-candidates;
for-all-parallel statement?candidates in-the-list-insert-macros into-
flowgraph;

3.2 Experimental Results and Conclusions

After exploiting subword parallelism, we have implemented code selectors in
compiling framework using graph-based code selection techniques improved from
Leupers’s [12]. The experiments are composed of two parts. One is to test the
performance of SWFG-based instruction selection. The other is to compare our
SWFG-based approach with Leupers’s code selection techniques based on inter-
mediate dataflow graph. The result of the algorithm is list of parallel components
which can be represented in flow-graph and executed in parallel by compiler.
SWFG of loop unrolling in Table 3 is shown in Fig. 5.
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SWP_write

data: in

+

SWP_read

+

SWP_read

data:: (0:3:1:lo)

data:: (0:3:1:lo)  

data:: (0:3:1:lo)

data:: (4:7:1:hi)

data:: (4:7:1:hi)

data:: (4:7:1:hi)

Fig. 5. A SWFG example for loop-unrolling

Framework Design. Our compiler framework is designed on sub-word TTA
(Transport Triggered Architecture)[13] data path. It offers concurrent execution
through a simple and flexible execution model. TTA depends much on compiler
for the premise that the compiler is capable of effectively analyzing an applica-
tion statically in order to extract available parallelism and target the available
hardware resources.

Front-end of the compiling framework is built upon GCC 3.4.0, by planting its
compiler gcc, assembler gas and linker gld, with BSD libraries libc and libm. By
adding auto-vectorization in gcc, the vectorizable serial programs are generated
ready for parallization. Back-end is built by utilizing compiling optimizations
provided by SDTA, including software bypassing, dead result move elimination,
operand sharing, operand sharing, socket sharing and scheduling freedom. It
needs to read sequential codes from front-end and the architecture description
from user. Then, subword parallel codes are realized

Prototype of the compiling framework is shown in Fig. 6. After identifying
SWP components, subword instructions are selected out. Benefited from the

Subword Instrucions 
Selection

Instruction Set information

Sequential Move code

Parallel Move code

Scheduler

Application
(C/C++)

Compiler 
Front-end

Sequential Simulator

Profiling
Information

Parallel Simulator

Machine 
Dependent 
Parameters

Fig. 6. Prototype of the compiling framework for Subword TTA Datapath
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subword TTA datapath, they can be mapped to machine-dependent instructions
easily. The generated codes afterwards can operate on corresponding registers
and sub-registers, so that existing instruction scheduling and register allocation
techniques can still be used.

Performance Test. The experiment is carried on with a group of standard
media applications using MP4 Instruments sets. It is not the purpose of our
experimentation to compare the code quality gain achieved by a certain SWP
instruction set. Instead, we mainly wanted to show that code selection with SWP
instructions frequently does result in higher code quality, and more important,
that exploitation of SWP instructions in compilers is possible without compiler
intrinsic and assembly libraries.

Table 5. Experimental results: Code selection with SWP instructions

source data type Unroll Without SWP With SWP CPU

vector add short 1 8 4 0.7

IIR filter short 0 22 22 5.1

convolution short 1 8 8 0.9

FIR filter short 1 15 9 0.9

N complex updates short 1 20 20 4.7

image composition short 1 14 7 3.2

The third column in Table 5 is unrolling factor. Unrolling is helpful in pro-
ducing more parallelism and is necessary for SWP instructions exploitation. The
fourth and fifth column give the number of generated machine instructions for
the loop body separately with and without exploitation of subword parallelism.
The sixth column gives the CPU seconds required when using SWP instruc-
tions. From the results we can conclude that, using vector-add can bring the
most decrease of instruction. And using SWP instructions with loop unrolling
once do not generate increase of instructions. For some applications, e.g. IIR and
convolution, SWP instructions are not applicable. For FIR filter and image com-
positing, the code quality gains are significant, due to the more powerful SWP
capabilities of MP4, e.g. special instructions for FIR computation. As shown for
the vector add and FIR filter, the use of SIMD instructions for char data results
in instruction count reduction, of 75.

Even though we use ILP for a part of code selection, the run time consumed
by our approach is moderate if the graphs to be compiled are not too large. This
is a consequence of the fact that most decisions concerning code selection are
already made during the DFG covering phase, which only takes polynomial time
in the DFG size. The largest example (FIR filter on char data), whose SWFG
comprises 95 nodes, takes 26.5 CPU seconds. We believe that this is acceptable
for embedded applications and systems-on-a-chip, where code quality is of much
higher concern than compilation speed.
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Comparative Test. Leupers has proposed an advanced dataflow graph-based
code selection techniques. To compare his with our SWFG-based code selection,
we compare the final SWP nodes pairs and generated program performance, as
shown in Table 6. The lib functions are chosen from sources in section 3.2, with
data type of 8 or 16 bit and loop unrolling of 1 or 3 times. From experiment above,
it is obvious to find that DFG-based code selection can only recognize bld move
with general SWP instruction (ADD2). The reason is that DFG-based code
selection techniques are unable to recognize sophisticate SWP instrucions and to
operate on subregisters in different locations. Expect general SWP instructions
such as MPY2 and SUB2, our SWFG-based techniques can select more kinds of
SWP instrucions, e.g. DOTP2 in fir sym, MIN2 in mad 16*16 and SADD2 in
pix sat cn.

Table 6. Comparation of two code selection techniques

Lib Functions unrolling DFG-based code selection SWFG-based code selection
node cycle node cycle

blk move 1 3 278 3 278
iir 1 0 2785 7 1184

fir sym 1 0 1040 5 496
mad 16*16 3 0 12852 3 2685
pix sat cn 3 0 557 3 112

Conclusions and Future Work. In this paper, we attempt to experiment
the effect of automatic code selection based on SWFG. An improved code selec-
tor using graph-based code selection techniques in our compiling framework is
implemented. After testing the performance and comparing with that of DFG-
based method, we can conclude that the SWFG-based approach can provide
fairly good result and the generated SWFG can be used as an intermediate rep-
resentation for the next step of compiler for SWP instruction selection and code
generation. In the next step, more efforts will be focused on complex loop nests,
alignment and loop unrolling factors.
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Abstract. For target recognition based on biologic vision, an application-specific 
stream SOC: MASA-MI is described in this paper. MASA-MI consists of several 
heterogeneous cores, and a stream accelerator core is used to accelerate matching 
image which consumes the most time in target recognition. We implemented it 
on Altera EP2S60 FPGA. Result shows the 166MHz MASA-MI provides a peak 
performance of 585 fps. MASA-MI’s performance is an order of magnitude higher 
than those of today’s DSPs such as the Texas Instruments TMS320DM642 
(600MHz). On the other hand, the cost is far less than special purpose processors. 

1   Introduction  

Automatic target recognition is generally applied in image recognition of vehicle, 
UAV, and missile seeker. Since the image acquired from different angles and positions, 
great distortion of the same target exists in different images. Target recognition 
algorithm based on biologic vision can accurately recognize the target [1][2]. However 
the algorithm requires tens to hundreds of billions of computations per second. Along 
with the demand for higher speed carrier and larger image resolution, the computing 
requirement is increasing. To achieve these computation rates, special-purpose 
architectures tailored to the application are used [3][4][10]. Such processors require 
significant design effort and are thus expensive. Today’s DSPs such as the Texas 
Instruments TMS320DM642 [5] are relative cheap, but are still one to two orders of 
magnitude worse than special-purpose processors [6]. For example, the 600MHz 
TMS320DM642 DSP provides a peak performance of about 50fps that is much lower 
than the requirement of high speed carrier. So there is a large gap between the cost and 
performance of special-purpose and DSP on target recognition. 

FPGA (Field Programmable Gate Array) is a high-performance and economic 
method of IC implementation because of its short development period and flexibility. 
The logic-capacity of a single state-of-the-art FPGA chip such as Altera StratixII FPGA 
is up to tens million gates [7]. There are abundant DSP and RAM resources and 
advanced bus structure in modem FPGA. 

For high speed target recognition based on biologic vision, this paper designs and 
implements MASA-MI stream processor on a StratixII EP2S60 FPGA chip. It is an 
application-specific stream SoC, which consists of heterogeneous cores. A stream 
accelerator is used to accelerate matching image, which consumes the most time in 
target recognition. Result shows that the 166MHz MASA-MI provides a peak 
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performance of 585fps. MASA-MI’s performance is an order of magnitude higher than 
those of today’s DSPs such as the Texas Instruments TMS320DM642 (600MHz). On 
the other hand, the cost is far less than special purpose processors. 

This paper mainly discuss the target recognition algorithm based on biologic vision 
and its hardware implementation, the other related contents such as filter, quantification 
and image segmentation are not discussed in this paper. The detail discussion of them 
can be found in [15][16].The remainder of this paper is organized as follows. Section 2 
indicates the theory of target recognition based on biologic vision and numerical 
computation method. Section 3 describes MASA-MI architecture. Section 4 shows the 
implementation result. The last section summarizes the conclusions drawn in this 
paper. 

2   Theroy and Algorithmn 

2.1   Theory of Target Recognition Based on Biologic Vision 

First step of Target Recognition algorithm based on Biologic Vision (TRBV) is using 
hypercolumns vector to represent image [1]. It chooses 2D Gabor function as reception 
field function of unicellular and tune orientation of Gabor function to determine a 
group of orientations. Then an n-Dimension hypercolumns vector can be derived by 
doing inner product of partial image and n Gabor templates respectively [8][9]. Gabor 
function is a sin or cos function tuned by Gaussian function, and the mathematic form is 
as follows: 

( )
2 2

1 1

1
1

,
2

x y

x y

i xi

x y

g x y e eσ σ ϖ

πσ σ

− +−

=  (1) 
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1
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sin( ) cos( )
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θ θ
θ θ
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⎨ = − +⎩

 (2) 

xσ  and yσ
 
are dimensional parameters. ϖ  is frequency parameter. θ  determines 

the orientation of Gabor function. ( ),ig x y  is a plural form, which including odd part 

(a sin function tuned by Gaussian function) and even part (a cos function tuned by 
Gaussian function). Figure 1 shows a group of Gabor templates.  

After using hypercolumns vector to represent image, image matching can be 
replaced by hypercolumns vector matching.  

We define ( , )f x y  and 
' ( , )f x y are two images which acquired from different 

angles. The projective transformation relation is as follows: 

'f (x, y) = A( ) f(x, y)ρ h  (3) 
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Fig. 1. A group of Gabor Templates 

A( )ρ  denotes projective transformation operator. ρ  denotes 8 projective 
transformation parameters. 

The hypercolumns vector of 
' ( , )f x y  image is

{ }' 1, 2,3....ig f i n=
. One 

element of vector is as follows: 

' *( , ) ( ) ( , ) ( ) ( , )i i ig f x y g A f x y A g f x yρ ρ= =h h  (4) 

*( )A ρ  is dual operator of ( )A ρ . Formula 4 denotes hypercolumns vector can be 
kept unchanged through transforming reception field function to compensate image 
transformation. We define Euclidean distance between hypercolumns vectors as 
follows: 

' * 2

1

( ( , ) ( ) ( , ) )
n

i i

i

D g f x y A g f x yρ
=

= −∑  (5) 

If ( , )f x y  and 
' ( , )f x y  represent the same target, we can minimize D  to get 

transformation parameter and complete image matching. 

*( ) arg min( )A Dρ =  
(6) 

For the same target, suppose the former frame of image is denoted by 1( , )f u v
, the 

latter frame of image is denoted by 2( , )f x y
, a affine transformation between targets in 

two frames exists as follows: 

0 1 4

2 3 5

x r u r v r

y r u r v r

= × + × +⎧
⎨ = × + × +⎩  

(7) 
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When the expression which represents relation between hypercolumns vector and 6 
affine parameters (r0~r5) is derived, 6 affine parameters can be calculated. In this 

paper, 6 parameters of *( )A ρ , when D  is minimum, are obtained by mini-least 

square solution for overdetermined equation. As result, if we get *( )A ρ  the new 

coordinate of the target can be calculated out, which is used to complete target 
recognition and tracking.  

2.2   Numerical Recipe  

The numerical recipe of TRBV is shown as Figure 2.Target image windows of 
reference image and live images to track are both supposed to be 6400 pixels (80*80). 
On the other hand, 36 Gabor templates and 36×6 affine templates, which conclude 
1612800 elements, are pre-stored in a matrix. 

Solve
by Gauss elimination 
method return  6 parameters 
      of

36 Gabor templates and 
36×6 affine templates

Subtracts live
image and 

reference image

Calculate inner products of 
reference image and 6 groups of 
templates with different affine 

orientation to get coefficient matrix

Calculate inner 
product of  

hypercolumns vectors
and templates to get 

right value of equation

 { }' 1, 2,3....ig f i n=

P-P'

Overdetermined 
equation 

bAxAA
h

•′=•′
*

)(

Transform coefficient 
matrix of equation

AA •′

 Transform right 
value of equation

bA
h

•′

)(* ρA

Target tracking：
get target's new 
coordinates

0 1 4

2 3 5

x r u r v r

y r u r v r

= × + × +⎧
⎨ = × + × +⎩

 'f (x, y) = A( ) f(x, y)ρ h

Conference image

Live images

(x,y)

A

 

Fig. 2. Flow chart of the numerical recipe of TRBV algorithm 

First subtracts live image from reference image, then performs inner product with all 
Gabor templates to obtain a vector (vector length is 36). In fact, this vector is the 
deference of hypercolumns vectors of live image and reference image. Let the group of 
vectors to be right values of equation. And let a 36×6 matrix to be a coefficient matrix, 
which is obtained by performing inner products of reference image and 6 groups of 
templates with different affine orientations. The major count of computation is about 
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1612800 multiplications and 12419200 additions. Then  )(* ρA can be get by resolve 

equation  ( n=36): 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++++
•••

=++++
=++++

nnnnnnn bxaxaxaxaxaxa

bxaxaxaxaxaxa

bxaxaxaxaxaxa

665544332211

2626525424323222121

1616515414313212111

＋

＋

＋

 (8) 

A  and  are respectively the coefficient matrix and right value mentioned before. 
This is an overdetermined equation, which we can get its least squares resolution by 
transform the equation into following form: 

 (9) 

The paper use Gauss elimination method [17] to resolve this equation, the 

algorithm returns 6 parameters of *( )A ρ . 

3   MASA-MI Stream SoC Architecture 

In terms of our numerical recipe discussed in section 2, we present a Stream 
System-on-Chip Architecture MASA-MI for TRBV algorithm. The overview of the 
architecture is shown in Figure 3. The architecture is consists of two scalar processors, 
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Fig. 3. The stream SoC architecture for target recognition based on biologic vision 



 A Stream System-on-Chip Architecture for High Speed Target Recognition 261 

a stream accelerator and several peripheral cores, which of all are connected together 
into a SoC system by Avalon bus [13]. It is designed for 80*80 target widow, and can 
scale to any other widow sizes easily. Finally MASA-MI is implemented on Altera 
EP2S60 FPGA, so it is special optimized for the features of FPGA device.   

Scalar processor 0 runs programs for controlling entire SoC. Firstly, when the system 
starts up, scalar processor 0 initializes each peripheral and loads template matrix and 
reference image from flash to SDRAM. Then, it sends commands to start up stream 
accelerator and scalar processor 1. After that, scalar processor 1 continually incepts the 
image from digital camera to SDRAM and runs image segmentation algorithm to 
approximately localize the place of target. Meanwhile, in terms of pre-arranged task 
schedule, stream accelerator loads images and templates from SDRAM and calculates 

the coordinate transformation operator 
*( )A ρ  by TRBV algorithm. This will occupy 

more than 95% of the amount of computation of total target recognition task. At last, 
scalar processor 0 gets the operator from stream accelerator to calculate the new 
coordinate of target. To accelerate processing of TRBV algorithm, the accelerator is 
designed base on stream processing [11], which is optimized for image stream with 
extremely high bandwidth hierarchy and large scale Processing Element (PE) array. 

3.1   Stream Buffer and Memory 

The most crucial part of the entire architecture design process of the stream accelerator 
is the design of memory system, because TRBV algorithm demands for both capacity 
and bandwidth of storage system. Since image processing has very typical stream 
characters that the pixel data pass filter once and will not be reused, cache is not  
suitable for [12]. We designed a novel stream memory system for TRBV algorithm as 
shown in Figure 4, which contains three memory hierarchies: off-chip SDRAM, 
on-chip frame register file (FRF) and stream buffer (SB). 
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Fig. 4. Stream memory hierarchy1 

                                                           
1 The on-chip bandwidth corresponds to an operating frequency of 166 MHz. 
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Reference image and templates both reside in two 4M×32 bit PC100 SDRAMs on 
backboard, and live image resides in 1MB SRAM on backboard. Two SDRAMs with 
SRAM together provide a 1.5GB/s peek bandwidth at 166 MHz. It’s hard to continue 
increasing bandwidth, which is limited to the layout of PCB board and the number of 
pins of FPGA. Live image stream is real-time inputting through USB or PCI port from 
camera. The memory system supports data stream transferring between the FRF and 
off-chip RAM. There are two stream channels designed across Avalon bus, one is 8bit 
wide for live image stream and another is 64bit wide for both reference image stream 
and Gabor templates. MASA-MI makes all memory references using Stream 
Load/Store instructions executed in DMA/address generate (AG) unit that transfer an 
entire stream between memory and the FRF. In our designs, stream elements of image 
are sequentially stored in memory for that image’s pixels must be contiguous. 
Meanwhile, the memory system also supports stride and indexed addressing. In 
addition, because memory-reference granularity is stream, we can optimize the 
memory system for stream throughput rather than the reference latency of individual 
stream elements. For instance, access stream form SDRAM in long burst mode is much 
faster than random-access mode. Moreover, these references and computation can be 
easily overlapped. For large data size, the memory system can load streams in double 
buffers mode to efficiently hidden the load latency. 

When data streams have been loaded on chip, all of them are stored in FRF. There are 
two FRFs corresponding to the two streams that are 128KB and 64KB respectively. 
Both FRFs work in software managed double buffer mode.  A double-buffered stream 
access involves cycling portions of a large stream through two halves of a smaller 
buffer in the FRF.  

As shown in figure 4, each PE’s data access to FPF go through a stream buffer (SB), 
which is consist of a FIFO and a address index logic. PE makes requests to the stream 
buffers to read elements from a stream. SBs in turn make requests to access the location 
in the FRF storage where that stream resides. These requests are handled by a 28:1 
arbiter in FRF controller. One SB is granted access per cycle and read 16 words into 
FIFO (The size of FRF’s outport is 128bit, each fifo has 32 entries). Finally, the PE can 
read or write data from their associated stream buffer. Stream buffers prefetch 16 words 
data one time from the FRF, while PEs read data from stream buffers at lower 
continuance bandwidth but higher instantaneous bandwidth. The bandwidth between 
28 SBs and 2 FRFs is 3.2GB/s, moreover total 28 SBs can provides PE array a 
instantaneous peak bandwidth of 9GB/s.  

In the final analysis, because of appropriate memory hierarchy and stream buffers, 
PEs are filled in at a much higher peak bandwidth than that off-chip RAM can provides. 

3.2   PE Array  

The structure of PE array is shown as Figure 5. PE array is the major computing engine 
of the MASA-MI. It is consists of two part: inner product generator and matrix 
multiplier. In inner product generator, multiplex parallel pipelines are designed which 

takes only 144000 cycles to calculate A  and  in formula (9).  
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Fig. 5. The structure of PE array 

Since there are abundant DSP block resources in the FPGA, we configure 28 PEs to 
perform inner product in parallelism. As shown in Figure 5, PE1, PE7, PE14, PE21 
respectively calculate 9 rows of deference of hypercolumns vectors(A7), PE1~PE6, 
PE8~PE13, PE15~PE28 respectively calculate 9 rows of coefficient matrix ([A1:A6]). 
Synthesized result shows that PE can work over 200MHz. In addition, MASA-MI 
architecture is easy to scale to more PEs if needed. 

Matrix multiplier performs matrix transpose and multiply that calculate AA •′  and 

 in formula (9). Since the amount of computation of inner product is far more 
than matrix multiply, matrix multiply is not the main workload. The parallel matrix 
multiplier structure is shown in Figure 5, it outputs a 6x6 coefficient matrix and right 
value vector of the equation. 

3.3   Cluster for Gauss Elimination Method 

The amount of computation solving equation is the least one of  entire image matching, 
but the procedure of Gauss elimination method includes lots of branch, floating-point 
multiply and floating-point division operations. If this part of computation is done on 
scalar core, it will become bottleneck of the whole target recognition according to 
Amdahl’s law. So we design a small cluster architecture [14], including a floating-point 
multiplier, a floating-point adder, a lookup table and register file. Former two units are 
implemented by Altera megafunction units [7]. Intra-cluster modules are interconnected 
by a cross switch. Microcodes of the Gauss elimination method is stored in ROM, 
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which are issued to and executed on cluster. The result is transferred to scalar processor 
through host interface (HI). 

In addition, two Altera NiosII 32b embedded IP cores [7] with 4KB instruction cache 
and 2KB data cache are applied as the host processors of MASA-MI. NiosII can get 
110MIPS performance at 100MHz.  

As an integrated SoC chip, MASA-MI integrates a lot of peripheral equipment 
interface, which can interconnect with devices on system board directly. The design use 
Avalon bus as on-chip system bus, Avalon masters and slaves interact with each other 
based on a technique called slave-side arbitration. Multiple masters such as stream 
accelerator and scalar processors can perform bus transactions simultaneously, as long 
as they do not access the same slave during the same bus cycle. 

4   Implementation Results and Performance 

4.1   Implementation Result 

MASA-MI has been implemented on Altera StratixII EP2S60 FPGA. Figure 6 shows a 
filter view of MASA-MI with major modules presented in section 3 highlighted. The 
architecture was modeled using Verilog as hardware description language and 
synthesized, placed and routed using Altera Quartus II 5.1. As shown in Figure 6, Nios 
cores and steam accelerator occupy the most regions of floorplane. Especially, stream 
accelerator used all of the MRAM resources and a large number of DSP blocks of 
FGPA. In detail, Table 1 summarizes the resource utilization by main modules. 

Statistics show that MASA-MI occupies 72% on-chip RAM and use 84 DSPs. These 
resources are all standard megafunction units integrated in today’s FPGA, which are 
abundant and works at high clock speed. In addition，multiple clock domains are used 
in MASA-M1 implementation by Enhanced PLL [7] on FPGA. At last, the critical path  
 

  

Fig. 6. Fitter view of MASA-MI Fig. 7. Development board of MASA-MI 
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Table 1. FPGA resource utilization by main modules 

 #ALUT #ALM #LCCOM #LCFF # RAM #DSP 
PE unit 
matrix mul unit  
matrix ram 
total PE aaray 

16 
32 
0 
556 

8 
16 
0 
280 

16 
32 
0 
544 

16 
32 
0 
544 

0 
0 
24576 
24576 

2 
4 
0 
68 

cluster 1456 831 1177 1073 46400 0 
FRF0 0 0 0 0 524288 0 
FRF1 0 0 0 0 1048576 0 
single SB 
All SBs  

32 
1728 

36 
1944 

44 
2464 

72 
3888 

256 
13824 

0 
0 

Stream Controlle 159 135 158 144 0 0 
HI 135 104 70 121 512 0 
Memory controller 551 225 157 457 0 0 
CPU0(niosII) 1664 1010 1069 1199 40336 8 
CPU1(niosII) 2675 1631 1949 1757 39808 8 
others 868 344 278 635 105682 0 

Table 2. Architecture parameters of MASA-M1 SoC 

Stream accelerator clock rate 166MHz 

Arithmetic bandwidth of  
stream accelerator 

8bit: 4.5 GOPS 
32bit: 0.5 GOPS 
float: 0.32GOPS 

Peak bandwidth of  
storage hierarchy 

off-chip memory: 1.5GB/S 
FRF: 3.2GB/s 
SB:  9GB/S 

Capacity of  
storage hierarchy 

SDRAM：32MB 
SRAM: 1MB 
FRF: 192KB 

Scalar Processor clock rate  100MHz 
Peak performance of  
Scalar processor 

110MIPS 

Power estimate (chip only) 775 mw 
Power estimate (chip on board) 1422 mw 

delay of the implementation of stream accelerator is SDRAM interface, which 
determines 166MHz operation frequency of stream accelerator. In conclusion, some 
important architecture parameters of MASA-M1 SOC are discussed in Table 2. 

4.2   Performance Analysis 

Group of experiments are run on development board of EP2s60 shown in Figure 7. 
Unfortunately we do not find a suitable high speed camera (over 500fps) for the 
moment, so a section of pre-shot video or sequential photos loading from a CF card is 
used to simulate camera inputting. Anyhow this will not influence the result of test 
which is major evaluating the performance of chip itself. Several practical target 
recognition programs were run on it, Figure 8 shows a result on real image, witch are 
two air photos. We randomly select some targets in the left image, and the right image 
shows matching results. 
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For comparison, we take a Pentium 4 PC2 as a reference of general purpose processor 
and TI DMA6423 (600MHz) as a reference of DSP with special instruction for image 
processing. All of them run the same algorithm. Table 3 shows the running time of 
target recognition (one matching target) on PC, TMS320DM642 and MASA-MI 
respectively. Because TRBV algorithm is the major computation of the application, the 
execution difference of TRBV algorithm in different processor is the key performance 
gap. Stream accelerator achieves 38.6 speedup compared to TMS320DM642 (C code). 
As a result, MASA-MI achieves much higher performance that is over 500fps higher 
than general processor or DSP. The further improvement of the speed is limited to other 
parts of the application such as scalar processing or IO. 

  

Fig. 8. Result on real image  

Table 3. Comparison of some processor for real image 

 PC TMS320DM642 (600MHz) MASA-MI 
  C code Assembly optimizer  

Time of TRBV ~80ms 36.40ms 18.65ms 0.94ms 
Speed up 0.4 1 1.9 38.6 

Time of others ~3ms 0.63ms 0.58 0.77ms 
Speed up 0.2 1 1.1 0.8 
Total time ~83ms 37.04ms 19.23ms 1.71ms 

Total Speedup 0.4 1 1.8 21.2 
Frame rate 12 fps 27 fps 52 fps 585 fps 

(80*80 target windows, 420*320 image size) 

5   Conclusions and Future Work 

In this paper, we propose an application-specific stream SoC architecture: MASA-MI 
for high speed target recognition based on biologic vision. The MASA-MI consists of 
two scalar processors, a stream accelerator and several peripheral cores, which of all are 
connected together into a SoC system by Avalon bus. Scalar processor runs programs 
for controlling entire SoC, while Stream accelerator is a key special coprocessor.  We 
design PE array and cluster for intensive computation, while we utilize stream memory 
hierarchy to minimize the memory references between the computations and exploit 
                                                           
2 P4 2GHz, 1GB DDR400. 
3 All the result of DM642 in this paper are compiled by CCS2 in the –o3 flag, and run on a real chip. 
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locality. Results demonstrate that the performance of MASA-MI achieves 585fps for 
target recognition at 166MHz, which is an order of magnitude higher than those of 
today’s DSP such as the TMS320DM642 (600MHz). Based on it, people can pursue 
higher speed carrier and larger image resolution. 

This work verified stream processing’s potential for target recognition. Combining 
stream processing and TRVB algorithm, we will try to improve MASA-MI’s 
performance to 1000fps in future work.   
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Abstract. Active Shape Model has been proven to be one of the most
popular methods for recognizing non-rigid objects, which requires huge
computation power for real time people tracking. After analyzing the
parallel characteristics of the algorithm, we propose a deep pipelined
structure for accelerating the Active Shape Model algorithm. The com-
puting engine is organized into a deep pipeline network composing of
multiple floating-point arithmetic units, including adders, multipliers, di-
viders and SQRT etc. A linear multiplication-accumulation (MAC) unit
is designed to lower the complexity of the computing resources while
keeping high pipeline throughput. In the optimization of the memory
efficiency for loading random data in large images during the step of
local search, we propose an on-chip buffer scheme to eliminate random
accesses to off-chip memory. Experimental results show that our FPGA
implementation achieves over 15 times of speedup compared with the
sequentially-implemented software solution in Pentium 4 computer.

Keywords: FPGA, Active Shape Model, People Tracking.

1 Introduction

Tracking people and recognizing their actions in video sequences become in-
creasingly important in many practical applications, such as human computer
interaction, motion capture for animation, video surveillance, and etc. The chal-
lenge is the forms of tracked objects keep changing between consecutive frames,
denoted as non-rigid objects. Over the last two decades, various methods have
been proposed to deal with this task. Kass et al. proposed Active Contour Mod-
els (ACMs) in 1987 [1]. Wiskott et al. proposed a Gabor feature based Elastic
Bunch Graph Matching (EBGM) method in 1997 [2]. In 1995, Cootes and Taylor
proposed Active Shape Model (ASM) [3], which has been proven to be one of
the most popular methods in this field. ASM has been widely used in areas, such
as video surveillance (e.g. [4]), facial recognition (e.g. [5]), medical imaging (e.g.
[6]), and so on. And a lot of improvements have been proposed upon traditional
ASM (e.g. [7]).

L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 268–279, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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ASM based on statistical models belongs to time-critical applications. The ad-
vantage of ASM is that it allows for considerable variability but still specific to
the class of objects or structure they intend to represent. However, since the ASM
algorithm is an iterative approach, it requires huge computation performance for
real time processing. Traditional embedded systems based on general-purposed
processors can not afford both of the computation and power dissipation require-
ments. Adam Baumberg developed a sequentially implemented people tracking
system [8] on the general-purposed processor, which is based on ASM. His sys-
tem improves the tracking speed by decreasing the number of sample points,
which will influence the tracking accuracy due to the information losses. There-
fore, making a fast and accurate hardware implementation for people tracking
applications is the focus of this paper.

In this paper, we present a real-time ASM-based people tracking system in
a reconfigurable hardware. The hardware implementation in our work is orga-
nized into a deep pipeline network composing of many floating-point arithmetic
operations. The characteristics of the algorithm are fully analyzed to exploit
spatial parallelism and temporal parallelism. In order to improve the memory
efficiency for loading random data in large images, we propose a hierarchical
memory scheme buffering part of the whole image in on-chip RAM block to
eliminate random accesses to off-chip memory, which takes full advantage of high
speed of on-chip memory and large capacity of off-chip memory. Data reusabil-
ity is exploited to improve the effective I/O bandwidth between the off-chip
memory and FPGA. Experimental results show that by using this hierarchical
memory scheme, speedups of at least 1.87 and up to 7.91 are achieved when
compared with the solution without on-chip RAM. By using our own designed
high-performance floating-point units, the clock speed of the system reaches
90MHz. With different size and sample points, the results show that speedups
of at least 4.29 and up to 15.40 are achieved while comparing our FPGA design
with sequentially-implemented software solution in Pentium 4.

The remainder of this paper is organized as follows. In Section 2, an overview
of people tracking applications based on ASM is described. Section 3 analyzes
the characteristics of the ASM algorithm. The design and implementation of the
system are presented in detail in Section 4. Section 5 introduces the performance
evaluation and experimental results. We finish with conclusion in Section 6.

2 Overview of ASM

In this section we briefly sketch the ASM framework, a more detailed description
of ASM can be found in [3].

In standard ASM, given a training set of S instances of the same object class,
each of them is represented by a set of landmark points {(xi, yi)}n

i=1. They can
be written as a 2n-element vector xs = (x(s)

1 , y
(s)
1 , · · · , x

(s)
n , y

(s)
n )T . Sample mean

and covariance matrices of them are:

x =
1
S

S∑

s=1

xs, C =
1

S − 1

S∑

s=1

(xs − x)(xs − x)T . (1)
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Let P = (P1|P2| · · · |PD) denote the matrix whose columns are the D eigenvectors
corresponding to the D largest eigenvalues λ1, · · · , λD of C. Any example of
the training set, xs, can be approximated by xs ≈ x + Pbs, where bs is the D
dimensional model parameter vector, computed by bs = PT (xs−x). The number
D of eigenvectors to retain is usually calculated as the smallest D that satisfies
fv

∑2n
i=1 λn �

∑D
d=1 λd, where fv is the proportion of the total variance of the

data which can be explained, usually ranging between 0.900 and 0.995.
For a given shape x, iterative matching is performed to approximate it as

closely as possible. Firstly, it is usually initialized with the mean shape(it means
each element of b is zero) and translation (tx, ty), rotation θ and scale s param-
eters reasonably close to their ‘true’ values. Then, these parameters are applied
upon the mean shape to generate the model point positions:

X = Ttx,ty,s,θ(x + Pb) . (2)

where the function Ttx,ty,s,θ performs a rotation by θ, a scaling by s and a
translation by (tx, ty). For instance, if applied to a single point (x, y),

Ttx,ty,s,θ

(
x
y

)

=
(

tx
ty

)

+
(

s cos θ −s sin θ
s sin θ s cos θ

) (
x
y

)

. (3)

Next, local search is processed around each point Xi in X to find the best new
position for it. It is usual to use fixed-length, one-dimensional profiles orthogonal
to the contour. For each example point, a fixed number of pixels on and to either
side of the contour are sampled. The pixel which has the strongest edge response
will be considered as the best match.

In order for more flexibility, the local search procedure can use self-adaptive
search scale instead of using fixed-length profiles. The search scale for each sam-
ple point can be automatically controlled using the Kalman filter mechanism(as
demonstrated by Blake et al[9]). The search window size ρi at the i’th sam-
ple point (xi, yi) is related to the positional variance V (xi) and V (yi) at the
estimated contour point given by

V (xi) = [(QGP )Pk(QGP )T ]2i,2i + V (ox) =
l−1∑

j=0

((QGP )2i,j)2σj + V (ox). (4)

where Q denotes the alignment matrix, G is a 2n × 2N sparse matrix mapping
the 2N control points to regularly spaced 2n sample points, Pk is the covariance
matrix of shape parameters, and V (ox) denotes the variance of the estimated
origin of the shape ôx(and a similar equation is obtained for yi). The search scale
ρi along the normal line ni(represented as ((ni)x, (ni)y)) is given by

ρi = 2

√
V (xi)V (yi)

(ni)2xV (yi) + (ni)2yV (xi)
. (5)

Thereinto, the normal vector n = ((n1)x, (n1)y, · · · , (nn)x, (nn)y)T is calcu-
lated according to n = Ttx,ty,s,θ(n + Nb)(where n denotes mean normal, and
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N = (N1|N2| · · · |ND) denotes the transformation matrix between model and
sample normal), which is similar to the calculation of model point vector X .

After processing all sample points, the parameters (tx, ty, s, θ, b) are updated
to minimize the error between the transformed model shape X and newly found
shape x. In order to ensure plausible shapes, every shape parameter bd is con-
strained in a certain range, usually between −3

√
λd and 3

√
λd.

The above procedure is iterated until the shape model has converged. Fig. 1
shows the sequential ASM algorithm with self-adaptive search scale and its data
flow.

get_estimate

get_scale
local_search

update_param

constrain_b

all points have been 
processed?

inner
loop

no

outermost
loop

yes

converge?
no

initializeoutput/end

yes

1. get_estimate: Using the current parameters (tx, ty, s, θ, b) 
to generate the model point positions using Equation 2;
2. get_scale: Automatically control the searching scale ρi
for each point Xi using the Kalman filter mechanism;
3. local_search: Examine a region of the image in the scale 
of ρi around each point Xi to find the best new position;
4. update_param: Update the parameters (tx, ty, s, θ, b);
5. constrain_b: Apply constraints to the parameters, b, to 
ensure plausible shapes;
6. Repeat until convergence.

Fig. 1. The sequential ASM algorithm with self-adaptive search scale and its data flow

3 Characteristics of ASM Algorithm

As shown in Fig. 1, ASM algorithm executes in an iterative approach after the
parameters (tx, ty, s, θ, b) are initialized. Each loop iteration of the outermost
loop updates the parameters at step 4 for next iteration, which results in flow
data dependence between consecutive iterations. Thus, the outermost loop it-
erations have to be executed in sequence. However, within a given outermost
loop iteration, there exist both spatial parallelism and temporal parallelism in
the inner loop from step 1 to step 3. Experimental results on general-purposed
processors show that the computational cost of these three steps is about 76%
of the time of the whole sequential algorithm. Therefore, we focus on these
three steps in this paper. The update param and constrain b steps will not be
emphasized.

In get estimate step, the 2i’th and the (2i + 1)’th element in the 2n-element
vector x are the x and y value of the i’th mean point respectively. They are
processed following Equation 6:

x
′

i = xi +
D∑

j=1

P2i,jbj, y
′

i = yi +
D∑

j=1

P2i+1,jbj . (6a)

xi = tx + (s cos θ)x
′

i + (−s sin θ)y
′

i, yi = ty + (s sin θ)x
′

i + (s cos θ)y
′

i. (6b)

where (x1, y1, · · · , xn, yn) forms the vector X .
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The above equation shows that x
′

i and y
′

i are both needed while calculating
xi or yi. The calculation of x

′

i and y
′

i are arranged in two arithmetic units
respectively so that the calculation of xi and yi can be done in parallel. In
addition, different sample points in vector x are streamed from inputs to outputs
in a pipeline mode to exploit temporal parallelism.

According to Equation 4 and 5, get scale step computing the value of ρi has
the similar program characteristics with get estimate step. Whenever the input
elements of vectors V (xi), V (yi), (ni)x and (ni)y are all ready, the processing of
V (xi)V (yi) and (ni)2xV (yi) + (ni)2yV (xi) can be triggered simultaneously. Since
the calculation of V (xi), V (yi), (ni)x and (ni)y has no data dependence at all,
they can work in separate arithmetic units in parallel and form a deep arithmetic
pipeline chain.

The local search step examines a region of the image in the scale of ρi around
each point Xi to find the best new position. For each pixel Xij in the scale of ρi

around each point Xi, the edge response is calculated according to

|
√

R2
Xij+

+ G2
Xij+

+ B2
Xij+

−
√

R2
Xij−

+ G2
Xij−

+ B2
Xij−

|. (7)

where RXij+ , GXij+ , BXij+ , RXij− , GXij− , BXij− denote the R, G, B value of
the two pixels on both sides of Xij . The processing for each Xij can be organized
in pipeline. Whenever the edge response is prepared, it will be compared with
the current maximal edge response. After all Xij for the current i have been
checked, the pixel with the maximal edge response will be chosen to update
parameters for next iteration.

According to the above analysis, get estimate step can work in parallel with
the calculation of V (x), V (y) and normal vector n. They are grouped into Stage
1. The value of ρi, results of ni, V (xi) and V (yi), can be grouped into Stage
2. Due to the data dependence between local search step and the value of xi,
yi and ρi, local search step has to follow the steps of get estimate and get scale,
which is organized in Stage 3 as shown in Fig. 2.

get_estimate calculate ni calculate V(xi), V(yi)

calculate ρi

local_search

Stage 1

Stage 2

Stage 3

(xi, yi)
ρi

Fig. 2. Parallel characteristics of ASM kernel

4 FPGA Implementation of ASM Kernels

4.1 System Architecture

Based on the program characteristics of ASM algorithm, we implement the ASM
kernels in an FPGA test-bed. Fig. 3 shows the structure of ASM hardware
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implementation. The FPGA test-bed includes a large capacity FPGA chip and
a SDRAM module, connecting to Host processor through USB interface. All
initial video frames are stored in SDRAM and the final results are transferred
to Host processor for displaying.
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Fig. 3. System architecture for ASM kernel

The hardware implementation is organized into a deep pipeline network com-
posing of many floating-point arithmetic operations. The ADD, SUBTRACT,
MUL, DIV, SQR, SQRT, MAC unit in Fig. 3 represent floating-point addition,
subtraction, multiplication, division, square, square root and multiplication-
accumulation respectively. The sqr, add unit at the left bottom corner in Fig. 3
are fix-point operations for the processing of pixel values.

The module in the top left of Fig. 3 implements get estimate step. Vector
{x1, y1, · · · , xn, yn} is stored in the on-chip memory. According to the analy-
sis in Section 3, this vector is decomposed into two vectors {x1, · · · , xn} and
{y1, · · · , yn}, which are placed in two separated on-chip memory modules so
that the modules can provide two operands per cycle. Likewise, the matrix P
are divided into two parts and stored in different memory modules. And con-
stants tx, ty, s cos θ, s sin θ are stored in registers. Following the pipeline chain,
the results xi and yi are produced and stored in on-chip memory, being used to
generate addresses for accessing main memory.

The module in the top middle and the module in the top right of Fig. 3
implement the calculation of (ni)x, (ni)y , V (xi) and V (yi), respectively. While
calculating V (xi) and V (yi), we use matrix A to denote {Aij = ((QGP )i,j)2|i =
1, 2, · · · , 2n, j = 0, 1, ..., l−1}, and vector B denotes {Bj = σj |j = 0, 1, ..., l−1}.
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Since their calculation is similar to the processing of get estimate step, these two
modules have the similar pipeline structure.

The above three pipeline units work independently. As the length of pipeline
unit calculating V (xi) and V (yi) is shorter than the other two pipelines, it pro-
duces the results earlier. For data synchronization, V (xi) and V (yi) are buffered
in FIFOs to wait for (ni)x and (ni)y. There is still a FIFO unit for balancing
the pipeline latency in the unit producing ρi according to Equation 5.

Address Generator unit uses values of xi, yi and ρi to get addresses for access-
ing a given segment in a video frame. The addresses are generated for the two
pixels on both sides of each pixel Xij , where Xij is the pixel around Xi within
the range of ρi along the normal line. Because the frame data are stored in Main
Memory, random accesses to pixel Xij will result in long memory latency. In
order to improve the memory efficiency for loading random data, we propose a
scheme buffering part of the whole image in on-chip RAM block to reduce the
number of random accesses. The detail will be described in section 4.2.

In the unit at the left-bottom corner, R, G, B information of pixels decom-
posed from RAM blocks are calculated to get the edge response for each Xij .
After the maximal edge response are compared from all Xij for the current i,
the coordinates stored in Coordinate FIFO unit are chosen as the new position
for Xi and used to update parameters for next iteration.

4.2 Eliminating Random Access to SDRAM by On-Chip Memory

As the frame data are stored in Main Memory implemented by SDRAM, random
accesses to pixel Xij will greatly suffer from long memory latency during the
local search step. On the other hand, on-chip RAM can not hold the whole frame
data. In order to improve the memory efficiency for loading random data in large
images, we propose a scheme buffering part of the whole image in on-chip RAM
block to eliminate random accesses to SDRAM, which takes full advantage of
both high speed of on-chip memory and large capacity of off-chip memory. Data
reusability is exploited to reduce the number of I/O between Main Memory and
FPGA.

According to the characteristics of local search step, all the sample points Xi

generated in the get estimate step compose an estimated people contour based
on the mean shape, as shown in Fig. 4. For a given Xi in the contour, there
exists an smallest area for searching, which is a rectangular holding the elements
of all Xij along the normal line of Xi as shown in the right corner of Fig 4.

The key idea of eliminating random accesses is that before searching the max-
imal edge response, we prefetch a block of pixel values containing a number of
searching rectangular from Main Memory into on-chip RAM. The block data
will be reused by several sample points respectively, as shown the shade rectan-
gular area in Fig 4. The searching sequence of all Xi should be arranged from
top to bottom as shown the sequence number (1, 2, 3, · · · ) in Fig. 4. Accord-
ingly, vectors {x1, · · · , xn} and {y1, · · · , yn} are both reordered in a sequence of
Y-coordinate, from top to bottom, so that xi, yi and ρi are produced in this
order, too.
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Fig. 4. Illustration of a people contour

Because the directions of normal lines for different sample points are variable,
the possible positions of Xij are distributed in a circle around Xi whose diameter
is ρi. Therefore, the height of the frame data in the on-chip RAM should be no
less than 
ρmax�(ρmax is the maximum of all ρi in the contour, where i =
1, 2, · · · , n). In addition, the width of the rectangle is (
ρmax� + W ), where W
is the width of the contour. To summarize, the number of the pixels that should
be in the on-chip RAM at the same time is (
ρmax�+W )∗
ρmax�. And because
each pixel value containing R, G, B information is 24bits, the capacity of the
on-chip memory should be (
ρmax� + W ) ∗ 
ρmax� ∗ 24bits.

Different contours may have different W and ρmax. We measured the variation
of search scales for 128 sample points on three people contours, whose sizes are
20 × 76, 32 × 96 and 50 × 110 respectively. Fig. 5 gives part of these results.
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Fig. 5. Variation of search scales for different sample points

We can find that the search scale changes in a certain range, which is calcu-
lated according to Equation 5. The search scales of 128 sample points on the
contour of size 20×76 range from 14.45 to 25.22. If the contour size is 32×96, the
minimum is 22.99, the maximum is 25.26. For the third contour, these statistics
are 23.04 and 31.71 respectively. After doing some more experiments on different
contours, we conclude that the search scale will be no larger than 50 when the
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people contour is no bigger than 240 × 320. Therefore, we use 50 and 240 as the
upper limit of ρmax and W in our work. Hence, the block capacity should be no
less than (240+ 50) ∗ 50 ∗ 24 = 339.8Kbits. We deploy a M-RAM memory block
of Altera FPGA with size of 512Kbits as the searching buffers.

4.3 Linear MAC Unit

get estimate and get scale step require 6 multiplication-accumulation (MAC)
units, each of which operates on two vectors inputs to get a single value for
result. Since there is no data reuse in this operation, it belongs to I/O bound
operations. In particular, its throughput is determined by the vectors input rate.

Assuming that m pairs of numbers are to be processed in a MAC operation,
tree-based MAC unit is one of implementation approaches. The left part of Fig. 6
illustrates this kind of structure. When many MAC operations are processed
using this pipelined architecture, very high throughput can be achieved. It can
output a result for one MAC operation in every clock cycle. The output rate of
{xi, yi, ρi} will reach one result per clock cycle. But the tree structure costs plenty
of computing resources, requiring m multipliers and (m−1) adders. In addition,
it also requires a lot of memory resources. For reading m pairs of values from
the memory blocks concurrently, we have to store data in m memory modules
to provide sufficient access ports, which will bring difficulties during the Place
and Route (P&R) phase.

In fact, in our work, the throughput of the get estimate and get scale step
do not have to be very high at all, since the bottleneck of the system is the
local search step in most cases. As long as the output rate of {xi, yi, ρi} is not
slower than that of the local search step, throughput reduction of {xi, yi, ρi} to
a certain extent will not affect the performance of the system.

In our design, all elements in each vector are stored in a single memory module.
It means that only one pair of elements is loaded in each clock cycle. Considering
this situation, we improve the tree-based architecture for our work in this paper,
as shown in the right part of Fig. 6. m multipliers are merged into one multiplier,
and m − 1 adders are replaced by 
log2 m� adders.

In the improved stucture, m pairs of elements flow into it sequentially. The
outputs of the multiplier are decomposed into 
m/2� groups, each of which
contains two adjacent outputs. The former output is buffered in a register for
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synchronization with the later output. Then they are sent into the next adder
unit simultaneously. Similarly, two adjacent outputs of the former adder unit are
sent into the next adder unit in the same way.

5 Experimental Results

In this section, we examine the performance of our design on a single FPGA. Our
target device is Altera Stratix II EP2S130F1020C5. This device contains 106,032
ALUTs, about 6 Mb of on-chip memory and 743 I/O pins. In our experiments,
we used Quartus II and Mentor Graphics ModelSim as development tools.

Experiment 1: Resource utilization and clock speed. We designed our own
floating-point adder, multiplier, divider and SQRT unit. These floating-point
units comply with the IEEE-754 single-precision format. Their characteristics
are shown in Table 1. The high clock speed of these units helps a lot for increasing
the performance of the system.

We have implemented get estimate, get scale and local search on FPGA. Their
performance characteristics are shown in Table 2. A lot of floating-point opera-
tions are used in the system, especially addition and multiplication. Because we
use four DSP block 9-bit elements in each multiplier, about 15% of such DSP
elements are used. By using our own high-performance floating-point units, the
system gets a high clock speed. Because of the control logic, the clock speed is
a little slower than that of the floating-point units.

Experiment 2: Performance comparison for different memory ac-
cesses. We compare the performance of the local search step between using
and not using the on-chip memory for buffering. Table 3 gives the details. If the
local search step randomly accesses the Main Memory directly and the on-chip
memory is not used, the effective I/O bandwidth will degrade greatly, resulting
in lower performance. Experimental results in row 4 show that the more sample

Table 1. Floating-point units

Adder Multiplier Divider SQRT

Stages of Pipeline 8 3 8 16

Area(ALUTs) 579 107 243 860

Clock Speed(MHz) 228 165 122 238

Table 2. ASM kernel implementation

No. of floating-point units DSP block Area(ALUTs) Clock Speed

Adder Multiplier Divider SQRT (% of 504) (% of 106032) (MHz)

get estimate 14 6 0 0 24(5%) 9968(9%) 93

get scale 25 13 1 1 52(10%) 11725(11%) 91

local search 1 0 0 1 5(<1%) 2415(2%) 184
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Table 3. Performance comparison for different memory accesses

contour size 50 × 110 32 × 96 20 × 76

no. of sample points 128 64 128 64 128 64 32

cycles(with RAM) 10752 10687 7112 7045 4143 4122 4107

cycles(without RAM) 52478 26174 47424 23552 32772 16384 7683

speedup 4.88 2.45 6.67 3.34 7.91 3.97 1.87

Table 4. Performance comparison with the software implementation in Pentium 4

contour size 50 × 110 32 × 96 20 × 76

no. of sample points 128 64 128 64 128 64 32

execution time of PC(us) 977.22 526.05 843.19 403.89 769.08 379.42 320.11

execution time of FPGA(us) 123.36 122.63 82.91 82.17 49.92 49.69 49.52

speedup 7.92 4.29 10.17 4.92 15.40 7.64 6.46

points are chosen in a contour, the more time is spent. But, if we use the scheme
proposed in Section 4.2, the image data can be read from the Main Memory
sequentially and buffered in the on-chip memory. At the same time, the buffered
data can be accessed randomly from RAM per cycle. Experimental results show
that the maximal speedup can be near 8 and the speedup rises with increase in
the number of sample points.

Experiment 3: Performance comparison with the software implemen-
tation in Pentium 4. We compare the performance of the FPGA design
(90MHz) presented in Section 4 with the software solution in Pentium 4(2.8GHz)
as shown in Table 4. The software solution is sequentially implemented according
to Fig. 1. The program code is written in C++ language and it is optimized. For
example, BLAS (Basic Linear Algebra Subprograms) library is used to optimize
the matrix multiplication operations, which are frequently used in the algorithm.
The execution time given in Table 4 is for a single iteration in ASM algorithm.
Three people contours are used to examine the performance, whose sizes are
20 × 76, 32 × 96 and 50 × 110. We test the performance while choosing different
number of sample points on the same contour. The results show that the more
sample points are chosen in a contour, the more time is spent in the PC solu-
tion. The reason is that the system is sequentially implemented in PC, and the
number of operations grows with the increase of the number of sample points.
We can also find in Table 4 that the performance of the FPGA implementation
depends much more on the size of the contour than on the number of the sample
points. The larger the contour is, the more time is spent. That is because the
system needs to read all the data in the rectangular which holds the contour from
the off-chip memory to the on-chip memory, and the time requirements of this
transmission influence the performance of the system. To sum up, the speedup
grows with the increase of the number of sample points and the decrease of the
contour size. In this experiment, speedups of at least 4.29 and up to 15.40 are
achieved. The average speedup is 8.11.
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6 Conclusion

In this paper, we implemented an ASM-based people tracking system in a re-
configurable hardware. ASM is one of the most popular methods for recognizing
non-rigid objects. Based on the analysis to the characteristics of ASM algorithms,
we proposed a pipelined architecture to prompt the performance of people track-
ing applications. The hardware implementation is organized into a deep pipeline
network composing of multiple floating-point arithmetic units. In order to im-
prove the memory efficiency for loading random data, we proposed a hierarchical
memory scheme to eliminate random accesses to off-chip memory. All proposed
design are implemented in a FPGA test-bed. The experimental results show that
hardware speedups can reach from 4.29 to 15.40, compared with sequentially-
implemented software solution in Pentium 4.
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Performance Evaluation of Evolutionary Multi-core and
Aggressively Multi-threaded Processor Architectures
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Abstract.  Processor architecture is undergoing a significant change in response
to  the  rapidly  escalating  complexities  of  high-power,  high-frequency,  and
increasingly  superscalar  designs.   Evolutionary  multi-core  and  aggressively
multi-threaded chips are appearing in the general purpose microprocessor space.
The  latter  offer  simplicity,  low  power,  and  high  performance  on  threaded
workloads but with somewhat reduced single thread performance.  This paper
examines  the  performance  of  the  SPARC64(TM)  VI,  a  dual-core  4-thread
processor,  and  the  UltraSPARC(TM)  T1,  an  8-core  32-thread  processor.
Numerous workloads are executed on both designs.  These include single thread
speed  tests,  homogeneous   throughput  tests,  and  multi-threaded  tests  using
varying amounts of data and parallelism.  The results indicate a clear separation
in the workloads that are best suited to each design.  To reap the full benefit of
these multi-threaded designs,  software has to  be architected to use as many
threads as possible.  This shift is likely to affect both software developers and
compiler writers for the next several years.

 1 Introduction

For about three decades processor architecture has steadily improved performance
using designs  that operate  at   increasing clock frequencies and processing  larger
numbers  of  program  instructions  simultaneously.   Techniques  such  as  deep
pipelining,  multiple  instruction  issue,  and  out-of-order  execution,  coupled  with
complex cache-memory hierarchies and prefetching have led to vast  increases  in
performance.   These  advances  have  been  made  possible  by  continuing  steps  in
process technology.  Recently, however, progress in this architectural direction has
slowed.  High power dissipation and the extreme complexities of these designs have
forced  architects  to  consider  alternatives  for  utilizing  the  increasing  number  of
transistors on a chip.

Modest multi-core/multi-threaded designs are now being offered by every major
general purpose microprocessor producer [1], [2], [3], [4], [5].  In these evolutionary
designs, there is no radical architectural change from the past.   An existing high-
clock rate, superscalar core is leveraged and multiple cores are placed on one die,
taking advantage of  the higher transistor  densities offered  by process technology
steps.   These  designs  continue  to  focus  on  single  thread  performance,  tend  to
consume high power, and offer only a few hardware threads.  Recently, a few brand
new aggressively multi-threaded designs have also emerged [6], [7] in the general
purpose microprocessor space.  These designs have been architected from scratch to
support a large number of hardware threads.  They use simple cores operating at a
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relatively  low  clock  frequency  and  target  high  throughput  on  multi-threaded
workloads with low power consumption [8], [9].

In this paper, we evaluate the performance of the above two processor architectures
on a variety of workloads.  For our study, we selected two designs based on the same
instruction set architecture.  This enables us to run exactly the same code on both
designs.  Aggressive CMT designs are still not very common in the general purpose
microprocessor space.  Azul Systems offers compute appliances based on the 24-core
Vega-1 and the 48-core Vega-2 processors.  However, these systems operate as  Java
co-processors  rather  than  as  standalone,  general  purpose  computers.   Also,  a
corresponding conventional design is not available.  Sun Microsystems offers an 8-
core, 32-thread UltraSPARC T1 processor which is based on the SPARC V9 ISA.  A
corresponding contemporary and conventional design is the SPARC64 VI processor
[12] which is also  based  on the  SPARC V9 ISA.  Systems  based on  these  two
designs are available and can run the same SPARC/Solaris executables.  This allows
performance comparisons to be made across the two architectures while keeping the
software stack the same.

We try to answer the following questions with this study.  What is the impact of an
aggressive CMT design on serial workload performance?  Do parallel workloads
benefit  sufficiently  from  a  design  that  offers  many,  but  less  powerful,  hardware
threads?   What  are  the  performance  profiles  of  the  two  designs  and  how  do
workloads map to each?  What software and compiler optimizations are important to
these designs?  And, finally, what kind of changes are likely to provide maximum
benefit in future CMT and conventional systems.

 2 Description of the Processors

Fig. 1 shows a simple block diagram of a SPARC64 VI, the conventional modest
multi-core  processor used in our study.  This chip contains two cores  which are
designs  leveraged  from  the  previous  SPARC64  V  chip.   Each  core  is  a  four-
instruction-issue  out-of-order  execution  engine  and  is  capable  of  handling  two
threads.  Each core  has its own private  level  1 data  and instruction caches, each
128kB in size.  In our system, the chip operated at 2.28GHz and had a 5MB unified
level 2 cache.  The level 1 caches are shared by two threads, and the level 2 cache is
shared by all four threads supported by the chip.

The two threads supported by a core operate in a vertically multi-threaded fashion.
A thread switch occurs either when an executing thread suffers a level 2 cache miss,
or a fixed time period has elapsed without a switch.  The latter is to prevent thread
starvation.  Within a thread, instructions can be issued out of program order, up to
four at a time (sustained).  Dual ported caches support up to two loads per cycle.
There is logic in the cores for sophisticated branch prediction.  The level 1 caches are
large to reduce cache misses.  There is also a hardware prefetch unit which tracks
cache misses and attempts to prefetch data in anticipation of future misses.  It is clear
that this design hopes to extract a significant amount of instruction level parallelism
and  execute  multiple  instructions  per  cycle  from  individual  threads  by  reducing
cache miss penalties and branch mispredict related stalls.
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Fig. 2 shows the block diagram of an UltraSPARC T1 processor.  This processor has
eight cores each capable of handling four threads.  The processor can thus execute 32
threads  simultaneously.   However,  each  core  is  very  simple.   Instructions  are
processed one at a time and in program order.  There is no branch prediction and no
hardware  prefetching logic.   Instructions  are  issued  in  round robin  fashion from
ready-to-run threads.  Any long latency instruction such as a load or a branch takes a
thread out of the ready-to-run pool until it is ready to run again.  Thread switching is
done on a per cycle basis with no overhead at all.  Each core has its own level 1 data
and instruction caches of 8kB and 16kB, respectively.  There is also a shared unified
3MB level 2 cache on the chip.  Four DDR channels are provided on the chip (not
shown in the figure) to access memory with high bandwidth.  It is clear that this
design focusses on being able  to execute a large number of threads but does not
devote resources to execute a single thread with maximum speed.  The efficiency of
this design is targeted at workloads that have multiple concurrent threads.  The clock
rate also is low because the design focusses on low power operation.

Fig. 2. Block diagram of the UltraSPARC T1
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Systems based on the SPARC64 VI target typical enterprise back-room datacenter
operations.  Small,  medium,  and large to very large  configurations are  available.
There is substantial focus on fault tolerance and reliability.  Our test system used
only one chip (2 cores,  4 threads)  with a 960MHz bus and a 32GB of memory.
However, systems with up to 64 chips (128 cores, 256 threads) and 2TB of memory
are available.  UltraSPARC T1 based systems are targeted at web services, network
infrastructure workloads, and security.  These systems focus on high compute density
and minimizing space, power, and cooling requirements.  Our test system had 1 chip
(8 cores, 32 threads) with a 200MHz bus and 32GB of memory.  Systems with up to
64GB of memory are available.

 3 

 3.1 Single Thread Performance

We evaluated the performance of the two processors on ten programs taken from the
SPEC CPU2000 integer suite.  Two of the twelve programs in this suite contain a
significant amount of floating point operations even though they have been placed in
the integer collection by SPEC.  These two programs, eon and vpr, were discarded
because the UltraSPARC T1 processor is  designed only to handle  incidental FP.
There is only a single FPU on the chip and it is shared by all 32 threads.  Some FP
instructions  even  trap  to  software.   As  such  FP  intensive  workloads  can  be
summarily dismissed as not being a suitable target for the UltraSPARC T1.

Fig.  3  shows the results  of  the  single  thread performance comparison.  The
SPARC64 VI is designed for an ideal single thread execution rate of 2.28*4 = 9.12
BIPS.  Similarly, the UltraSPARC T1 can execute at most 1.2*1 = 1.2 BIPS from a
single thread.  The thick line at the top of the graph represents this ideal speedup of
7.6.  The actual speedup is considerably less, typically around 5.5, but it is quite
significant.  SPEC CPU integer programs are known to have a low cache miss rate.
In this suite, only mcf has noticeable cache misses.  On this program, the speedup
achieved is  only about  2.2.   This  is  because  both processors become limited by
memory  latency  and  the  abundant  resources  in  the  SPARC64  VI  core  are  less
effective on it.   The traditional design of the SPARC64 VI does very well on the
other, largely cache resident, programs.

 3.2 Throughput Performance

The  SPEC CPU2000 benchmark  includes  a  throughput  metric  in addition to the
popular speed metric.  The throughput or rate score is measured by simultaneously
running  n copies of  each benchmark.  Any value  of  n may be  used.  Typically,
vendors will choose to run as many copies as the number of hardware threads in their
system.  However, this also means that the data footprint, and thus the cache misses
suffered, of a system running a large number of copies may be more than those of a
system running a fewer number of concurrent copies.  This is not  a fundamental
problem with the metric, but in our case the two architectures we are comparing have
significantly different numbers of hardware threads.  To make sure we are running
the same workload on both, we chose to measure throughput by running 32 copies.

Performance of  Different Workloads
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Fig. 3. Speedup on serial execution: 2.28GHz SPARC64 VI over 1.2GHz UltraSPARC T1

Fig. 4. Speedup on throughput: 1.2GHz UltraSPARC T1 over 2.28GHz SPARC64 VI
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Fig. 4 shows the results of the throughput comparison.  Note that with respect to
throughput,  the  peak  capacity  of  the  SPARC64  VI  is  2.28*4*2  =  18.24  BIPS.
Correspondingly, the peak capacity of the UltraSPARC T1 is 1.2*1*8 = 9.6 BIPS.
The thick line in the graph shows this  ideal ratio of 0.53.  That is,  based on the
designed in capacity, the  SPARC64 VI should be  expected to deliver  1.9X more
throughput than the UltraSPARC T1.  However, the results are almost exactly the
opposite.  The UltraSPARC T1 is able to squeeze out more throughput from its lower
capacity than the SPARC64 VI.  On the average, performance increases by 1.9X on
the Ultra T1.  Mcf, with its noticeable miss rate, achieves ~3X more  performance on
the UltraSPARC T1.  Cache resident, high ILP programs, are the most favorable to
the SPARC64 VI, though even here the UltraSPARC T1 remains ahead.

 3.3 

Commercial  codes  have behaviors  that  are  not  reflected  well  in the  SPEC CPU
programs we used in the previous two sections.  However, large commercial codes
are difficult to acquire, set up, and run.  Many are proprietary.  To study commercial
code performance we used an internally developed benchmark,  Comscape.   This
benchmark mimics code patterns typically observed in the traces of various customer
codes [10], [11].  The instruction mix consists of approximately 20% loads, 10%
stores, 50% ALU, and 20% branches.  The branches are more unpredictable and the
loads more difficult to prefetch than those in SPEC CPU.  Comscape can be executed
with varying numbers of threads.  By increasing the size of the databases processed,
the cache miss rate can be varied from very small to very large.  Performance is
measured in terms of the number of application instructions completed per second.

Fig. 5 shows the performance profiles generated by Comscape on the SPARC64 VI
(dashed lines) and the UltraSPARC T1 (solid lines).  When 1 thread is used, the
SPARC64 VI starts at about 4 billion instructions/sec. on a cache resident dataset.
This means it is processing a good 1.75 instructions/cycle when the cache miss rate is
negligible.  However, performance falls off rapidly as the dataset grows and the miss
rate increases.  Performance does improve significantly with 2 threads, coming close
to the ideal 2X across the full tested range.  With 4 threads, the gain in performance
is not  noticeable on small datasets.  At high cache miss rates, the multithreading
within each core does show gains approaching 20%.  For the full chip (4 threads),
performance drops below 1 instrn/cycle at over 16 memory accesses/1000 instrns.

On the UltraSPARC T1, performance with 1 thread is only about 0.5 instrn/cycle
even when there are no memory accesses.  This processor has no ability to hide load,
branch, or any other stalls within a single thread.  As threads are added, however,
performance scales nearly  linearly up to 8  threads.   All  8 cores  of  the chip  are
utilized at this point.  At 16 and 32 threads, the threading within the core comes into
play and the execution resources inside a core are better utilized by multiple threads.
Performance continues to increase beyond 8 threads for this reason, though not quite
linearly.  The dip in the middle with 32 threads is due to unfortunate cache conflicts.
We could move the data objects to avoid this conflict but we chose to show the curve
without such tuning.  Such conflicts can and will occur in real life and not all users
will detect them and tune their application.  In spite of the dip, performance is quite
good.

Synthetic Commercial  Performance Profile
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Fig. 5. Performance on Comscape, a synthetic benchmark for commercial codes

Comparing the two architectures, we see that if  there are  less than 4 threads, the
SPARC64 VI is a clear winner for all but the large datasets.  This is the processor of
choice  for  workloads that  have low thread  count  and small  to medium datasets.
However, when the thread count is 16 or more, the UltraSPARC T1 does very well,
particularly on large datasets.  Given a target workload's parallelism and memory
access rate, it is then possible to estimate which architecture might be the one more
suitable for executing it.

 4  Impact of Compiler Optimizations

The UltraSPARC T1 has eight very simple cores.  For decades, however, compiler
optimizations have advanced with the goal of extracting performance from complex
superscalar cores like the ones in the SPARC64 VI.  Some modern optimizations
such as trace scheduling, prefetching, if-conversion, and the use of non-faulting loads
trade increased  instruction count  for  more  efficient  instruction  execution.   These
optimizations might not be helpful on the UltraSPARC T1.  Classic optimizations
such  as  common sub-expression  evaluation,  invariant  hoisting,  and  various  loop
transformations operate without such a trade off, and can be expected to help both
processors.  The impact of optimizations on the two architectures could, therefore, be
quite different on the two architectures.

Scores of optimizations are implemented in modern  compilers.  We studied  the
impact of a few selected optimizations in our compiler, Sun Studio 12, to gauge their
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impact on the throughput performance of the two architectures.  Table 1 shows the
results of this study.  The top half has data on the SPARC64 VI and the bottom half
the  same on the UltraSPARC T1.   Performance is normalized to the case  when
optimization  is  turned  off  (-O0)  in  our  compiler.   The  first  column has  all the
optimizations available in the compiler.  The half dozen columns in between have
various optimizations turned off, one at a time and are briefly described as follows:

� nogsch –  No  global  scheduling.   Global  scheduling  uses  heuristics  and
profile feedback information to move instructions from one basic block to
another.  Instructions executed speculatively are executed in a non-faulting
manner.  Global scheduling increases the number of instructions executed.

� noinli –  No  inlining.   Inlining  uses  heuristics  and  profile  feedback
information to selectively inline functions at appropriate call sites. Although
inlining  by  itself  would  only  reduce call/return  overhead,  it  can expose
opportunities for other optimizations previously barred by a call.

� noloop –  No loop multi-versioning.  Loop versioning emits two or more
versions of certain loops and selects the optimal version at run time.  This
optimization  can be  useful  if  the  knowledge of  certain conditions  helps
optimize the loop well.

� nounro – No loop unrolling.  Loop unrolling reduces branches and overhead
instructions by executing  them once for  multiple  iterations.   It  can also
expose  opportunities  for  other  optimizations  by  combining  multiple
iterations together.  However, it does increase code size.

� nopre – No software prefetching.  Software prefetching attempts to fetch
data in advance of cache misses.  Both loads and stores may be prefetched.
The  benefit  depends  on  the  application's cache miss rate  as well  as the
compiler's ability to prefetch the misses.  It involves adding instructions.

� nostre –  No  strength  reduction.   Strength  reduction  involves  replacing
instructions with other instructions that are expected to execute faster.  For
example, a multiplication might be replaceable with a few shifts and adds.
On many processors, shifts and adds are faster than doing the multiply.

Full optimization had a huge impact on both processor architectures.  Comparing the
first and last columns, performance increased by 2.9X on the SPARC64 VI.  The
increase  was  only  slightly  less,  2.6X,  on  the  UltraSPARC T1.   Removing  most
individual optimizations did not cause  large  performance drops.  Inlining enables
many optimizations and had the largest impact among the optimizations tested with
drops of 16% and 11% on the SPARC64 VI and the UltraSPARC T1, respectively.
The benefit of individual optimizations varies with the processor and the application
behavior.  For example, mcf is the toughest program to optimize on both machines.
It has quite a lot of cache misses.  On the SPARC64 VI processor, the hardware
prefetch unit does a good job and so the benefit of software prefetch is not evident.
However, on the UltraSPARC T1, this difficult program derives about one-third of
its total optimization gain from software prefetch.  Similarly, vortex has some large
loops with inter-iteration dependences and control.  Loop unrolling does not help it
much.  On the SPARC64 VI, the impact of turning off unrolling is small, but on the
UltraSPARC T1 the instruction cache is quite small, and turning off this ineffective
unrolling results in a noticeable gain.
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Table 1.  Impact of compiler optimizations on the two processor architectures

 5 Conclusion

Escalating power consumption and the design complexity associated with increasing
clock frequency and extracting performance from serial workloads is forcing a shift
in general  purpose processor  architecture.   In this  paper we have compared  two
designs that combat this problem.  The first design, a 2.28GHz SPARC64 VI, is an
evolutionary  one  leveraging  traditional  superscalar  cores  and  possessing  limited
parallelism.  The second design, a 1.2GHz UltraSPARC T1, supports a large number
of  threads  but  with  limited  capability within each.   It  also operates at  a  modest
frequency to keep power consumption down.  Both designs implement the SPARC
V9 instruction set and run the Solaris(TM) operating system.  This makes it possible
to compare the exact same software stack executing on the two architectures.

On serial workloads, the SPARC64 VI  is clearly superior.  It wins by about 5X on
small  footprint,  cache  resident  single  threaded  programs.   When  the  memory
accesses increase, this lead drops considerably as both designs become dominated by
memory latency.  On workloads containing many threads, the 8X more threads in the

SP64 VI all none
3.13 3.12 2.95 3.12 2.86 3.13 3.12 1.00
2.03 2.04 2.01 2.08 2.07 2.09 2.12 1.00
1.69 1.68 1.68 1.69 1.67 1.68 1.68 1.00

crafty 3.30 3.30 2.76 3.27 3.30 3.29 3.29 1.00
2.93 2.94 2.33 2.93 2.92 2.93 2.93 1.00
3.23 3.28 3.07 3.24 3.25 3.24 3.22 1.00

gap 3.18 3.19 2.69 3.18 3.16 3.19 3.17 1.00
3.54 3.59 2.01 3.56 3.58 3.54 3.58 1.00

bzip2 3.68 3.72 3.29 3.78 3.70 3.68 3.64 1.00
2.79 2.78 2.65 2.74 2.79 2.79 2.78 1.00

G.M. 2.88 2.89 2.49 2.88 2.85 2.88 2.88 1.00

nogsch noinli noloop nounro nopref nostre
gzip
gcc
mcf

prsr
perl

vrtx

twolf

US T1 all none
3.19 3.23 2.92 3.22 3.11 3.14 3.24 1.00
2.30 2.30 2.23 2.28 2.24 2.31 2.31 1.00
1.44 1.30 1.41 1.51 1.41 1.29 1.33 1.00

crafty 2.55 2.47 2.06 2.47 2.44 2.40 2.41 1.00
2.60 2.61 2.32 2.60 2.61 2.59 2.62 1.00
2.84 2.85 2.81 2.81 2.72 2.79 2.79 1.00

gap 2.93 2.94 2.89 2.91 2.82 2.90 2.80 1.00
3.49 3.54 2.33 3.48 3.72 3.48 3.51 1.00

bzip2 3.25 3.31 2.93 3.26 3.24 3.26 3.28 1.00
1.82 1.80 1.75 1.84 1.91 1.83 1.85 1.00

G.M. 2.56 2.54 2.31 2.56 2.54 2.51 2.52 1.00

nogsch noinli noloop nounro nopref nostre
gzip
gcc
mcf

prsr
perl

vrtx

twolf
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UltraSPARC T1 provided an excellent gain.  In spite of this chip having about half



the total instruction execution capability of the SPARC64 VI, it achieved about twice
the  throughput.   Results  from a  synthetic  commercial  benchmark indicate  that  a
performance  gain  of  up  to  3X  is  possible  for  either  chip  depending  on  the
characteristics  of  the  workload.   The SPARC64 VI is  to  be  preferred  when  the
number of threads is less than 4, and the memory access rate is less than about 16 per
one thousand instructions.  With 12 or  more threads, and higher memory access
rates,  the  UltraSPARC  T1  is  the  processor  of  choice.   Optimization  was  not
unimportant for the simple UltraSPARC T1 design.  In fact, it was almost as valuable
as for the SPARC64 VI, providing approximately 2.4X in performance compared to
unoptimized  code.   Inlining  was  an  important  optimization  because  it  created
opportunities for many other optimizations, but otherwise no single optimization had
a big impact.  This suggests that the road for compiler writers is a long and difficult
one – while there is much total opportunity, there is no quick and easy win.

For the future, it appears natural that both architectures will evolve and move toward
each other  as they work to eliminate their weaknesses.  A large number of fairly
powerful  threads  will  soon  be  available  to  the  average programmer.   Tools  for
parallelization  and  the  education  of  a  new generation  of  software  developers  to
“think parallel” when designing applications will become critically important.
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Abstract. While the semiconductor industry has provided us with powerful 
systems for personal supercomputing, how to efficiently harness the computing 
power of these systems still remains a major unsolved problem. This challenge 
must be approached by simultaneously solving the synchronization problem and 
the parallel programmability problem. This paper reviews the synchronization 
issues in modern parallel computer architectures, surveys the state of the art 
approaches used to alleviate these problems, and proposes our Request-Store-
Forward (RSF) model of synchronization. This model splits the atomic 
synchronization operations into two phases, thus freeing the processing 
elements from polling operations. Finally, we show how we could learn from 
nature and improve the overall system performance by closely coupling 
peripheral computing units and functional units. 

1   Introduction 

Due to diminishing returns in single-core design in recent years, all major competitors 
in the semiconductor industry have all announced a multi-core designs. For instance, 
Niagara is a Chip-Multithreading (CMT) processor from SUN that features eight cores, 
each able to simultaneously executing four threads [8]. Cyclops is a Chip Multi-
processors (CMP) design from IBM, which contains 160 thread units and is under active 
research [9]. Intel’s Teraflops Research Chip is another many-core design that packs 80 
cores on a single die [10]. For data storage, Niagara utilizes a two-level cache system. 
With this architecture, data communication and synchronization take place through the 
shared cache and may rely on its cache coherence mechanism. On the other hand, both 
Cyclops and the Teraflop Research Chip utilize a uniform address space distributed 
memory system, and data communication and synchronization take place through an 
on-chip network, which allows message passing from one core to another. 

While the industry has provided us with the tools for personal supercomputing, 
how to utilize the enormous computing power from tens or even hundreds of 
computing cores still remains a difficult problem. For instance, although Intel has 
demonstrated that their Teraflop research chip is able to deliver more than one trillion 
floating-point operations per second, it is also implied in their white paper that this 
chip is not destined for general-purposed computing [11]. The major challenge facing 
the semiconductor industry today is not only to develop high-performance chips, but 
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more importantly, to harness the computing power of these systems. Specifically, to 
achieve high performance, this challenge has to be addressed at the software and the 
architectural level instead of only at the software level. To achieve this goal, two 
problems, namely programmability and synchronization, need to be addressed in 
concert. Programmability can be roughly defined as the easiness of mapping parallel 
real-world applications onto parallel architectures, whereas synchronization ensures 
the correctness of parallel execution by enforcing dependencies between instructions. 
A good programming model demands the support of a good synchronization 
mechanism. A fine-grain parallel programming model would not be useful if the 
corresponding synchronization mechanism were coarse-grain. As a result, research in 
parallel computing should be following three steps: the design of a good 
synchronization mechanism, the design of a good parallel programming model, and 
the synthesis of the two.  

The goal of this paper is to review some of the several approaches that have been 
proposed in recent years to address the synchronization problems. We also propose a 
split-phase Request-Store-Forward synchronization model to address the challenges 
faced by synchronization mechanisms on modern parallel computing architectures. The 
schemes we survey include cache and register-based synchronization mechanisms 
aiming to reduce the synchronization latency by shortening the distance between the 
processing elements and the location where synchronization operations take place 
[4, 16], transactional memory which attempts to reduce synchronization latency through 
speculative execution [1, 2], synchronization buffer  which approaches aggregate 
synchronization states in a buffer, thereby increasing memory utilization efficiency 
[6, 7], and the Synchronized Pipelined Parallelism Model is a software synchronization 
model that provides a good temporary solution for the synchronization problems [5]. 
While these approaches each aims at improving on one aspect of the synchronization 
problems, an ideal hardware-based model has yet to appear. 

2   Problems with Conventional Synchronization Mechanisms 

Conventional synchronization mechanisms are constrained by long synchronization 
latency, resource contention, as well as synchronization granularity. Synchronization 
latency can be as high as hundreds of cycles if synchronization takes place through a 
shared memory system. The atomicity of synchronization operations often forces the 
requesting processors to stall during the operation. For fine-grain synchronization 
operations, this latency dominates the execution time. In addition, the polling 
mechanism introduces serious contention problems. When multiple processes are 
attempting to lock a shared variable in memory, only one process will succeed, while all 
other attempts are strictly overhead of several kinds: 1) Performance Overhead: in the 
busy-waiting stage, the requesting processors are tied up sending out polling messages. 
In addition, contention may lead to deadlock situations that require extra mechanisms 
for deadlock prevention, which further degrade system performance. 2) Communication 
Overhead: until the lock is obtained, the requesting processors need to continuously 
place lock requests on the system bus. In a shared-memory multiprocessor system with 
spin-lock synchronization, the number of synchronization requests grows nonlinearly 
with the number of contending processes, making the system not scalable [3]. 3) Power 
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Consumption Overhead: a side effect of the previous two overheads. Furthermore, with 
a coarse-grain synchronization mechanism, a data structure instead of a word needs to 
be locked for synchronization although only one word is under synchronization at any 
instance of parallel execution. This not only results in unnecessary serialization of the 
access to data structures but may also introduce cache contention problems.  

An ideal synchronization mechanism for Chip-Multi-Processors, especially many-
core systems, should possess the following characteristics: 

 Fine-Grain: the degree of parallelism that can be exploited in a parallel 
computing system is limited by the granularity of synchronization.  

 Low-Latency: a synchronization mechanism is useful only if its latency does not 
dominate the execution time.  

 Contention Free: to efficiently synchronize the operations of different 
processing elements, the ideal synchronization mechanism should be contention 
free. 

 Scalability: the ideal synchronization mechanism should be able to scale as the 
number of cores in the system increases. 

 Flexibility: the ideal synchronization mechanism should be application-
independent.  

In this paper, we propose the Request-Store-Forward (RSF) model of synchronization 
for modern parallel computing systems. This model splits atomic synchronization 
operations into two phases: upon the arrival of synchronization requests, it stores the 
synchronization state and allows the requestors to continue with other tasks; when the 
synchronization operation finishes, it forwards a notification message as well as the 
requested data to the requestor.             

3   Cache and Register-Based Synchronization Mechanisms 

To address the synchronization latency problem, some mechanisms have been 
proposed where synchronization operations would take place at the shared cache 
level, or even at the register level [16, 17, 18, and 4]. For instance, Yamawaki et al. 
[4] propose to utilize a cache coherence mechanism to perform synchronization. In 
their design, all on-chip caches are split into global cache, which stores shared data, 
and local cache, which stores data only local to the processing element. All the shared 
caches are able to communicate with each other through a cache-to-cache direct 
access bus.  

In this design, two fundamental operations, store word with synchronization (sws) 
and load word with synchronization (lws) are utilized. The sws operation stores a 
word as well as a counter to keep track of the number of times the stored data would 
be consumed. The lws operation loads a word and decrements the counter by one. For 
producer-consumer synchronization, the producer utilizes sws to store the item 
produced and the consumers utilize lws to load the data produced. Thus, when the 
counter associated with the data produced becomes zero, it signals the completion of 
the producer-consumer operation. For mutual exclusion, the counter of the shared 
variable is set to 1, and all requesting processing elements issue an lws operation, but 
only one lws operation would succeed and decrement the counter to zero. When other 
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requestors observe that the counter value is zero, they stall and wait for the 
succeeding thread to exit the critical section. Upon completion, the succeeding thread 
issues an sws operation to reset the counter to one, which signals other requestors to 
resume. For barrier synchronization, the counter of the synchronization variable is set 
to the number of threads under barrier synchronization. Upon the arrival of each 
thread, an lws operation is issued to decrement the counter. When the counter value 
becomes zero, all threads are released from the barrier.  

In this approach, each time a synchronization operation is issued, this operation as 
well as the data are broadcasted through the dedicated cache-to-cache direct access 
bus. The global cache of each processing unit then updates its data with the 
broadcasted data and adjusts the counter value according to the synchronization 
operation. This approach combines communication and synchronization with 
coherence maintenance, thus resulting in efficient data communication and 
synchronization. Nevertheless, this design is not scalable and may not fit many-core 
architectures. The broadcasting of synchronization operations as well as of the data 
produced creates a bus bandwidth requirement that may grow linearly with the 
number of cores in the system. This requirement is very hard to meet in a large-scale 
parallel computing system that contains hundreds of cores.  

4   Transactional Memory 

Motivated by the high degree of parallelism in database transactions, transactional 
memory utilizes speculation to reduce synchronization latency [1, 2]. In this context, a 
transaction is defined as a chunk of instructions that are guaranteed to execute only as 
an atomic unit. Each transaction produces a block of writes called the write state 
which will be committed to the shared memory after the completion of the execution. 
Although there is no parallelism within a transaction, parallelism does exist between 
transactions. With this design, an application program is partitioned into transactions, 
and each processor is assigned one transaction. Then all processing elements in the 
system can start speculative execution simultaneously by assuming that the current 
transaction does not depend on the write states of other transactions. When a 
transaction completes, its write state is broadcasted throughout the system. Then other 
transactions can listen to this write state and determine whether they have used data 
that has been modified by it. If not, then parallelism is successfully exploited through 
thread level speculation. Otherwise, the current transaction has used data modified by 
other transactions, which causes the execution to be incorrect due to inconsistent 
memory states. In this case, the current thread has to roll back to its previous state, 
invalidate all its execution results, and restart the transaction.  

In this model, system consistency is maintained by imposing a sequential ordering 
only between transaction commits. Thus, no serialization of instructions is required 
for execution of transactions, which allows thread level speculation. If parallelism 
were successfully exploited through speculative execution, then it would create the 
appearance that synchronization has zero latency. In addition, this scheme eliminates 
the expensive cache coherence mechanism in that the processor cores are able to store 
both the unmodified data lines and the speculatively modified data lines. Thus, it can 
be implemented with or without a cache system. Furthermore, when inserting 
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transaction boundaries in application programs, the programmers do not have to 
worry about data dependency between instructions, which makes parallel 
programming much easier. Nevertheless, to efficiently utilize this mechanism, the 
programmers still have to carefully choose the size of the transaction. If the 
transaction is too large, then it may result in frequent rollbacks, which reduces system 
efficiency. On the other hand, if the transaction is too small, then synchronization 
overhead may dominate execution time.        

Despite all the benefits it provides, the transactional memory scheme is not 
scalable for two reasons. First, it requires system-wide bus arbitration for commit 
permission. When a transaction completes its execution, its write state needs to be 
committed through the system bus. In a many-core system, system bus resource 
contention is incurred when multiple cores attempt to simultaneously access the 
system bus. This may result in a large arbitration latency, which degrades system 
performance. Second, the broadcasting of write states demands a very high bus 
bandwidth and causes large communication overheads. In addition to the scalability 
problems, speculation failures in this scheme often lead to costly rollbacks, which are 
inefficient in terms of performance as well as power consumption. 

5   Synchronization Buffer 

Based on the observation that only a small fraction of memory locations are actively 
participating in synchronization at any instance of parallel execution, Zhu et al. [7] 
proposed the Synchronization State Buffer (SSB), which records and manages the 
states of frequently synchronized data at the word level. When a synchronization 
operation is issued, it first checks whether the word under synchronization already 
exists in the synchronization buffer. If the word under synchronization exists in the 
synchronization and is being locked, then the requesting processing element gets a 
failure message and attempts to lock the word again. Otherwise, a buffer line is 
allocated for the word and the requesting processing element can move on with its 
execution. For mutual exclusion, this scheme provides two basic operations, read lock 
and write lock. For producer-consumer synchronization, it allows both single-
producer-single-consumer and single-producer-multiple-consumer synchronization. 
For the single-producer-multiple-consumer case, instead of requiring the consumers 
to continuously issue consume requests until the data under synchronization has been 
produced, this scheme records all consume requests in the synchronization buffer and 
notifies the consumers to consume data upon the arrival of the data produced. As a 
result, the synchronization contention problem in producer-consumer synchronization 
is eliminated. 

By aggregating the synchronization states of the whole memory into a small buffer, 
this design eliminates the synchronization-state-tracking full/empty bit from memory, 
thus resulting in a more efficient use of memory space. Also, the synchronization buffer 
records the synchronization state of individual words, thus providing fine-grain 
synchronization capability that prevents unnecessary serialization of the accesses to data 
structures. In addition, this mechanism enables split-phase operations for producer-
consumer synchronization, and thus, to some degree alleviates the resource contention 
problem introduced by the conventional polling synchronization mechanism. However, 
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for mutual exclusion synchronization, the proposed mechanism fails to record the 
synchronization states, thus leaving the contention problem unsolved.  

To address the synchronization contention problem, Monchiero et al. [6] have 
proposed the Synchronization Operation Buffer (SOB). SOB is similar to what we 
propose in this paper: it utilizes a synchronization buffer to intercept all synchronization 
requests, record these requests, and then notify the requesting processes when the lock 
becomes available. By recording synchronization requests in memory, each processing 
element only has to issue one synchronization request for each synchronization 
operation, thereby eliminating the synchronization contention problem. It has been 
demonstrated in this paper [6] that this approach not only results in a performance 
improvement but also reduces system power consumption. Although this scheme is 
theoretically simple and effective, only mutual exclusion synchronization is considered 
and no detailed mechanisms for the implementation of wait queue storage and data 
forwarding have been provided.  

In both designs, the buffer size is fixed. When the buffer becomes full, the system 
needs to utilize software synchronization routines, which could take hundreds of cycles 
to complete. Note that the designs of the synchronization buffer are for fine-grain 
synchronization, but that once the software routines are utilized, the synchronization 
latency will dominate the execution time and consequently, the benefit of fine-grain 
synchronization will be lost. On the other hand, some applications have a low degree of 
parallelism, thus the buffer is under-utilized for most of the time, resulting in a waste of 
on-chip hardware resources. 

6   Synchronized Pipelined Parallelism Model 

Unlike the previous hardware mechanisms, the Synchronized Pipelined Parallelism 
Model (SPPM) proposed by Vladamani et al. [5] is a software-based synchronization 
mechanism that exploits parallelism by restructuring applications into a pipeline of 
producers and consumers. This approach targets CMP and SMT systems with 
multiple levels of shared cache. The authors suggest that the commonly used spatial 
decomposition parallel programming model overlooks the temporal parallelisms 
which otherwise exists in shared data, thus resulting in an inefficient use of the shared 
caches and the memory interface. As the number of application threads increases in a 
parallel computing system, the effective size of the shared cache seen by each 
processor is reduced, which would result in more cache misses. Under these 
conditions, when a producer produces a data item, this data item may soon be 
replaced out of the shared cache, forcing the consumers to go to the shared memory to 
fetch this data item, resulting in long synchronization latency. 

The essence of this approach is to force the data under synchronization to stay in 
the shared cache until it has been consumed. As a result, the number of cache misses 
incurred by consumers can be reduced and consumers can fetch data with a low 
latency. When the working set of the application is too large to fit into the shared 
cache, this approach sets the shared cache as a medium for the flow of data from the 
producers to the consumers, thus facilitating efficient communications between the 
producer and the consumer. Under this synchronization model, there are three states 
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between the producer and the consumer. First, when both the producer and the 
consumer are actively producing and consuming data, they are in the state 
“Processing Data.”  In this state, parallelism is successfully exploited by concurrently 
running the producer and the consumer. Second, when the consumer consumes faster 
than the producer produces, it switches to the state “Waiting for Producer” to allow 
for the producer to catch up. In this state, the consumer is stalled so that parallelism 
between the consumer and the producer cannot be exploited; on the other hand, the 
consumer would not be able to incur unnecessary cache misses, resulting in an 
efficient utilization of the shared cache. Similarly, when the producer produces faster 
than the consumer consumes, it is stalled and switches to state “Waiting for 
Consumer” to allow for the consumer to catch up. 

Simulation results have demonstrated that compared with the traditional spatial 
decomposition programming model, SPPM is able to exploit parallelism without 
introducing high memory bus utilization overheads and additional cache misses. Thus, 
this approach can be seen as a great temporary solution to the problem of parallel 
processing synchronization. However, this approach suffers from the legacy code 
problem: to gain any benefits, the software needs to be re-written following SPPM, 
making this approach impractical. One counter argument is that this programming 
model will be implemented by the compiler, which is able to automatically restructuring 
any parallel applications into a pipeline of producers and consumers; however this has 
yet to be implemented. In addition, software synchronization routines introduce high 
performance overheads (each software operation can take hundreds of cycles to 
complete), thus preventing the exploitation of fine-grain parallelism.  

7   The Request-Store-Forward (RSF) Synchronization Model 

To meet the needs of modern parallel computing systems, we propose the Request-
Store-Forward (RSF) model of fine-grain synchronization based on the idea of I-
Structures. An I-Structure is a data structure proposed by Arvind et al. [21]. In 
contrast to the traditional atomic data transaction operations, I-Structure supports 
split-phase transaction, thereby reducing communication overheads and alleviating 
contention problems. It has been demonstrated by Lin et al. in [19, 20] that a software 
version of I-Structure can significantly reduce network traffic while providing 
efficient producer-consumer synchronization. Like I-Structure, the RSF model is a 
split-phased mechanism. Instead of keeping track of the synchronization states by 
attaching a full/empty bit to each word in memory, RSF utilizes a synchronization 
buffer to keep track of all synchronization operations. It follows the following steps: 

 Request: when a process demands synchronization on a shared variable, it sends 
a synchronization request to the synchronization buffer.  

 Store: If the request cannot be served immediately, instead of setting the 
requestors in polling state, the synchronization buffer records and orders all 
synchronization requests in a FIFO queue. Further, the requesting process 
switches to sleep mode. By recording the synchronization states, contention is 
eliminated.  
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 Forward: after the current synchronization operation is done, the synchroni-
zation controller removes a request from the wait queue and sends a notification 
message as well as the requested data to the requestor, thereby completing 
synchronization and communication in one operation. 

The proposed RSF model targets many-core architectures with either shared cache 
systems or uniform address space distributed memory systems. It meets all the 
requirements for an ideal hardware synchronization mechanism. First, it is a fine-
grain word-level synchronization mechanism. Each line in the synchronization buffer 
is able to keep track of the synchronization states of individual words in memory. 
Second, by recording the synchronization states, the contention problem is eliminated. 
Third, all synchronization operations take place in the shared cache or on-chip 
memory so that the synchronization latency can be reduced to less than ten cycles. 
Fourth, instead of dedicating a fixed-size buffer for synchronization, we propose to 
dynamically allocate the shared cache or on-chip memory space for the 
synchronization buffer so that the buffer can be flexible to meet the needs of different 
applications. Last, in the producer-consumer synchronization, the forwarding of data 
to multiple consumers may restrict the scalability of multi-core systems. To address 
the scalability problem, a scalable forwarding scheme is proposed in the RSF model. 

7.1   Dynamic Buffer Storage 

For the design to be flexible, we propose to implement the synchronization buffer 
inside the cache or on-chip memory and dynamically adjust its size to fit the needs of 
different applications. For applications that require a very low degree of synchroni-
zation, such as OS multiprogramming workloads, buffer space can be freed up for 
data storage. For applications that require a large degree of synchronization, buffer 
space can be allocated to prevent the use of software routines. The dynamic allocation 
algorithm has to meet several requirements. First and most importantly, there should 
be enough space allocated for the synchronization buffer so that no software routine is 
needed, thereby guaranteeing that the synchronization latency is small. Second, since 
the buffer is implemented in cache, the cache contention situation needs to be taken 
into consideration. Third, the algorithm should be simple so that it can be 
implemented in hardware.  

 
Algorithm for dynamic allocation: 
  if buffer full 
     grow by G; 
  if there is contention and buffer not full for n cycles 
      shrink by 1; 

 
When the synchronization buffer becomes full, it is grown by G lines, where G 

reflects the current cache contention situation in the system. On the other hand, the 
buffer size is shrunk to free up storage space only when the cache contention is high and 
the buffer has been underutilized for n cycles. The design parameter n represents the 
sensitivity of the allocation logic. If this logic is too sensitive (n=1), it might result in 
oscillatory actions of buffer line allocation and deallocation, which introduces extra 
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power consumption due to excessive hardware operations. If the logic is not sensitive 
enough, then it acts as a fixed-size buffer, therefore losing its flexibility. 

7.2   Synchronization Requests 

To provide effective synchronization, both Mutual Exclusion Synchronization (MES) 
and Producer-Consumer Synchronization (PCS) [12] are required. For MES, each 
time only one of the contending processes is allowed to update a shared variable, so 
that there is no parallelism existing between requests. For PCS, the consumers must 
wait until the producer generates the required value, otherwise, the operation will be 
incorrect. But once the data is produced, all consumers can simultaneously consume 
that data. In the RSF model, MES is implemented through three operations: 

 
 Write Lock:  (return value) = wrlock (address, value) 
 Read Lock:  (return value, data) = rdlock(address) 
 Unlock:  unlock (address) 

 
When a MES request is issued, the synchronization controller first checks the 

synchronization buffer. If the requested data is not in the synchronization buffer, then 
one line is allocated to the buffer to record the current synchronization state. If the 
requested data is already in the synchronization buffer with mode No Lock, the mode 
block is updated to either Write Lock or Read Lock and thread ID is updated to the ID 
of the requestor. In both cases, the synchronization operations will succeed. For a 
write request, value is stored in location address and return value success is sent back 
to the requestor. For a read request, a “return value success” as well as the requested 
data in location address is returned to the requestor. With this approach, both the lock 
acquisition and the read/write operation can be accomplished in one operation.  

Otherwise, if the requested data is already present in the synchronization buffer and 
is in the write mode, then the current request is added to the wait queue and a “return 
value failure” is returned to the requestor. Upon receiving the failure message, the 
requestor goes into the sleep mode for power saving. When the requested item is in the 
read mode, the requestor with a write request receives a “return value failure” and goes 
into the sleep mode. Further, its thread ID is added to the wait queue. Note that if the 
requested item is in the read mode, a read lock request will succeed and receive a 
“return value success” along with the requested data. This is because multiple read 
requests do not conflict with each other and should be served simultaneously.  

After the synchronization operation has been completed, an explicit unlock 
operation is issued to release the lock. At this stage, if the wait queue is not empty, 
then the synchronization controller takes an item from the wait queue and executes 
the synchronization operation. On the other hand, if the wait queue is empty, then 
mode is set to No Lock. Unlike conventional atomic synchronization operations, the 
proposed approach splits the synchronization operations into two phases if the request 
fails, thereby completely eliminating the contention problem.  

PCS is implemented in two operations: 
 
 Produce:  (return value) = produce (address, value, consumer count) 
 Consume:  (return value, data) = consume (address) 
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As opposed to MES, PCS does not require an explicit unlock message to release 
the lock. Instead, it utilizes the counter in synchronization buffer. If the producer 
produces before the consumers consume, then it allocates a line in the synchronization 
buffer and sets counter to consumer count, or the number of consumers. Each time a 
consume request is issued, the counter is decremented by one and the data along with 
return value success are returned to the requestor. When the counter hits zero, the 
synchronization buffer line is released and set to the No Lock mode. On the other 
hand, if a consumer issues a consume request before the requested data has been 
produced, a synchronization buffer line is allocated with the counter set to 1, and also 
a wait queue is initialized to store the requestor’s ID. Meanwhile, the return value 
failure is returned to the requestor, which instructs the requestor to go into sleep 
mode. Subsequent consume requests each increment the counter and append their IDs 
to the wait queue, then go to sleep. Once the producer produces the data item, it stores 
the data item value in location address and sets counter to the number of consumers, 
or consumer count. Then the consumers are removed from the wait queue and the 
requested data item is forwarded to all consumers. Each time a consumer is removed 
from the queue, the counter is decremented by one. When the counter hits zero, the 
synchronization buffer line is released and set to the No Lock mode. Similarly, PCS 
operations are split-phase, thereby avoiding the contention problem.  

7.3   Storage of Wait Queue 

When the synchronization requests cannot be served immediately, these requests are 
stored in a wait queue so as to eliminate contention and the pointer to the wait queue 
is stored in the synchronization buffer. These wait queues should be implemented in 
the shared cache or in the on-chip memory to keep the synchronization latency low. If 
the wait queues were stored in the lower-level memory, then the thread ID fetch time 
would dominate execution time. One could argue that these wait queues place a large 
burden on the shared cache. Nevertheless, as mentioned in the previous sections, once 
a thread ID is added to the wait queue, the requesting thread goes into the sleep mode. 
Therefore, in the worst case, the size for all wait queues should be n*p, where n 
represents the number of threads supported in the system and p represents the size of a 
thread ID.  

7.4   Data Forwarding 

When a lock is released and its corresponding wait queue is not empty, a thread ID is 
removed from the wait queue. Then, a message is forwarded to wake up the thread 
and notify it that it has successfully obtained the lock. This procedure is repeated until 
the wait queue becomes empty. This Sequential Centralized Forwarding Scheme 
(SCFS) works well for MES due to the lack of parallelism among mutual exclusion 
locks. In contrast, parallelism does exist in PCS such that all consumers are able to 
simultaneously consume a data item. As a result, SCFS introduces two problems for 
PCS. First, it creates a serious resource contention problem on the shared memory. It 
requires the memory controller to be tied up for a long time to handle the 
synchronization operations on only one memory location. Second, this approach 
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performs forwarding in a sequential order, and thus the last consumer in the wait 
queue will be getting the requested data after a long delay.  

For system scalability, we propose the Tree Forwarding Scheme (TFS). The wait 
queue is stored as a binary tree, and implemented as an array. When the data is 
produced, the data along with the wait queue are forwarded to the first consumer. 
Then the first consumer extracts the left sub-tree and the right sub-tree from the wait 
queue and stores them in two new arrays. Next, it forwards the data item as well as 
the left sub-tree of the wait queue to its left child; and the data along with the right 
sub-tree to its right child. Subsequently, the left and the right child repeat this 
procedure until the leaf nodes are reached. The resource contention problem is 
addressed in this approach because the memory controller only needs to send out one 
copy of the data item. Second, the latency problem is also alleviated by finishing the 
forwarding operation in n2log  steps instead of n steps, where n is number of 

consumers.  
An analytical model can be used to evaluate the resource contention on the 

memory controller and the latency for the forwarding mechanism. In this analysis, n 
represents the number of consumers in the wait queue, p represents the size of each 
thread ID, w is the size of the word under synchronization, and t represents the inverse 
of bus bandwidth, or the time for sending out a unit of data. Notice that the word size 
w should be far greater than the thread ID size p. In a typical system, each word has a 
size 32 bits or 64 bits whereas the thread ID size p equals m2log , where m is the 

number of threads supported in the system. For a 100 thread system, the size of p is 

only 7 bits. With SCFS, the memory controller is responsible to forward the data item 
to all consumers in a sequential order. Thus, the workload on the memory controller is 
to send out wn *  units of data, and the forwarding operation takes twn **  units of 
time to finish. With TFS, the memory controller forwards the data item and the wait 
queue to the first consumer, and the rest of the forwarding work is done in a 
distributed and parallel fashion. The resulting workload on the memory controller is 

wpn +*  units of data, but forwarding can be done in n2log  steps. As a result, as 

demonstrated by equations (2), (3), and (4), for a large n , TFS not only prevents the 
resource contention problem introduced in SCFS, but also outperforms both SCFS in 
forwarding latency.  
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8   Heterogeneous Multicore: A Lesson From Nature 

In order to efficiently implement the RSF model of synchronization, the memory 
controller needs to dynamically allocate memory space for the synchronization buffer, 
update the synchronization buffer as synchronization operations take place, and 
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forward data and synchronization messages to different cores. Especially for many-
core systems, these tasks may impose heavy burden on memory controllers. Can the 
current implementation of memory controllers handle all these tasks?  Or, in the first 
place, should these tasks be implemented in memory controllers?  We could seek a 
hint to the answer from nature.  

Biological systems are highly complicated systems composed of many different 
cell types, with each focusing on one function. For instance, the two major 
components of the human brain are gray matters and white matter. Gray matter cells 
are powerful computing units responsible for computation-intensive tasks, whereas 
white matter cells are less computationally powerful components responsible for 
communication. The intermingling of these two matters enables human brains to 
efficiently perform extremely complicated computations. While the major competitors 
of the computing industry are proposing homogeneous many-core systems, the 
authors believe that heterogeneous multi-core systems, similar to those found in 
nature, will eventually outperform homogeneous multicore systems. In fact, it has 
already been demonstrated that heterogeneous multi-core systems deliver similar 
performance with lower power consumption [13].  

We advocate that peripheral computing units should be closely coupled with 
functional units to maximize system performance. As proposed in this paper, by 
handling synchronization in the computing units embedded in the memory system, the 
major computing cores can be freed up from synchronization overheads. Indeed, there 
are two benefits to embed computing units in the memory system: first, peripheral 
functions, such as synchronization, can be offloaded from the computing cores. 
Second, some simple computations can be done in memory without suffering from 
any communication overheads. For example, test-and-set is a commonly used 
function for synchronization. The processing element that successfully obtains the 
lock fetches the data from memory, performs an increment function, and stores this 
data back into memory. Although it is merely a simple addition operation, it actually 
requires two memory requests, one read and one write, which result in high 
communication overheads. One way to eliminate these overheads is to have the 
increment done in memory. Processor-In-Memory (PIM) technology embeds simple 
computing units in memory [14, 15] and it is certainly one option to offload 
peripheral functions, such as synchronization, from the main computing cores.             

9   Conclusions and Future Work 

How to efficiently harness the computing power of many-core systems is the main 
challenge now faced by the semiconductor industry. This challenge should be 
approached by solving the programmability problem as well as the synchronization 
problem. This paper has reviewed the synchronization problems in modern parallel 
computer architectures and has proposed the Request-Store-Forward (RSF) model of 
synchronization. This model splits the atomic synchronization operations into two 
phases, thus freeing the processing elements from being tied up for polling operations. 
We have also demonstrated that this model is fine-grain, low-latency, contention-free, 
flexible, and scalable, and that it thus fits well modern multi-core computing systems.  
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To implement the RSF model of synchronization, some computing tasks need to be 
offloaded from the computation cores to the memory system. Although this may 
increase the burden on the memory controllers, by closely coupling peripheral 
computing units and functional units, such as memory, the overall system 
performance may be improved. Nevertheless, more work needs to be done to 
investigate how different levels of coupling may impact overall system performance, 
implementation area, as well as power consumption. In addition, further research will 
be needed to evaluate how the proposed synchronization scheme impacts the cache 
performance, especially cache contention 
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Abstract. Chip multiprocessors (CMPs) with on-chip network connect-
ing processor cores have been pervasively accepted as a promising tech-
nology to efficiently utilize the ever increasing density of transistors on
a chip. Communications in CMPs require invalidating cached copies of
a shared data block. The coherence traffic incurs more and more signifi-
cant overhead as the number of cores in a CMP increases. Conventional
designs of cache coherence protocols do not take into account character-
istics of underlying networks for flexibility reasons. However, in CMPs,
processor cores and the on-chip network are tightly integrated. Exposing
the network features to cache coherence protocols will unveil some opti-
mization opportunities. In this paper, we propose distance aware protocol
and multi-target invalidations, which exploit the network characteristics
to reduce the invalidation traffic overhead at negligible hardware cost.
Experimental results on a 16-core CMP simulator showed that the two
mechanisms reduced the average invalidation traffic latency by 5%, up
to 8%.

1 Introduction

The wide availability of chip multiprocessors (CMPs) has demonstrated their
capabilities to efficiently utilize the ever increasing number of transistors. On-
chip networks [1], which have been used to interconnect multiple processing
elements on a chip, is a promising technology that targets the delay and power
consumption problems of global wires [2].

Like distributed shared memory (DSM) machines, CMPs maintain data coher-
ence by cache coherence protocols. Conventionally, the cache coherence protocol
and the network are considered as two non-related components in a DSM system.
The design concepts and optimization techniques of protocols do not take into
account the characteristics of underlying networks. Likewise, network optimiza-
tions concentrate on reducing communication latency without consciousness of
up-level protocols. Considerable flexibility is achieved as the protocols can be
deployed on a wide variety of networks. When CMPs are concerned, however,
processor cores and the interconnect network are tightly integrated and, in ad-
dition, parameters of the on-chip network are determined at design time. These
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natures motivated us to expose network characteristics to the protocols so as to
explore new approaches to improve the performance of CMPs.

As more and more cores are placed on future CMPs, one practical design
methodology is to assemble tiles of same-sized cores into an array by an on-
chip network as depicted in figure 1 [3,4]. Each core contains a fraction of the
L2 cache which is shared by multiple cores though physically distributed. Com-
pared with private L2 caches, shared caches have the advantage of allowing more
capacitance for each core and avoiding duplicated copies of the same cache line
in private caches. Directory-based cache coherence protocol [5] is a more appro-
priate option for maintaining coherence of data copies among L1 caches than
bus-based snoopy protocol for scalability reasons. A directory keeps track of the
global coherence states and the sharers’ identifications of all cache lines in L2
cache. Before a processor core can modify the data of a cache line, it must send
a read exclusive request to the directory which invalidates remote copies of that
cache line. When the directory receives acknowledgments from all the sharers, it
replies the requester with write grant. Figure 2 illustrates the communications
incurred. The invalidation process introduces high overhead and its significance
is growing as the number of cores in a CMP increases. This paper presents two
mechanisms exploiting the network features to reduce the invalidation overhead
at negligible hardware cost.

Following the discussion above, traditional designs of directory-based proto-
cols may result in sub-optimal operations as they have little knowledge of the
network. As shown in figure 1, where a 2-D mesh network with XY routing algo-
rithm [6] is applied in a CMP, if the directory in core A needs to invalidate data
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Fig. 1. An example architecture of a tiled CMP. Each core contains private L1 caches
and a fraction of the shared L2 cache. Multiple cores are connected by a 2-D mesh
routing on-chip network (boxes marked with P represent processor cores and boxes
marked with R represent routers).
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Fig. 2. The directory invalidates all the shared copies before replying the requestor

copies in L1 caches of cores B and C, the protocol may first send out the inval-
idation message b for B and then message c for C. The problem is that c takes
more hops – so more clock cycles – than b to complete, but it is sent later, which
increases the overall delay. Lacking the information of the network (C is further
than B) causes the protocol to make sub-optimal schedules. We propose that
the coherence protocols designed for CMPs should comprehensively consider the
distance between cores.

Observations showed that the number of cores sharing a cache line is usually
larger than one. Conventional approaches, which send one invalidation message
for each sharing core respectively, would create bursts into the network and
cause significant contention. This would bring negative impact on performance.
We extend the above optimization technique to compact multiple invalidation
requests into one network packet, which effectively lower the network load.

Using a cycle-accurate execution-driven simulator of a 16-core CMP, we eval-
uate our proposed mechanisms with a set of scientific computation workloads.
We find that the two mechanisms together reduced the average overhead of in-
validation traffic by 5%, up to 8%.

This paper is organized as follows: Section 2 explains the distance aware opti-
mization technique; Section 3 extends this mechanism to deliver multiple inval-
idation requests instead of one within a network packet; Section 4 discusses the
simulation methodology and the workloads we use; Section 5 presents experiment
results; Section 6 describes related work and we conclude in section 7.

2 Distance Aware Protocol

Conventional cache coherence protocols of DSMs are not designed for a ded-
icated network so as to facilitate the flexibility. Protocols neither care about
whether the network is of mesh topology or torus topology, nor require messages
to be delivered in order [5]. More specifically, processors proceed without the
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knowledge of what their positions are in the system and what is the distance
from one to another.

Although flexible, this methodology led to missing some optimization oppor-
tunities. Shared copies of a cache line must be invalidated before the data can
be modified or evicted from L2 cache. With oblivious policy, the invalidation
message for the further node, which takes more cycles to reach its destination,
could be sent late resulting in increased overall latency. As we can also see from
figure 1, it has little benefit of getting the acknowledgement early from node B,
because the directory has to wait until the last acknowledgment arrives which is
most probably from C – the furthest node. So sending message for C early may
be a better solution.

The coherence protocol should be aware of the network topology and set the
priority of dispatching invalidation messages based on the distances of sharers
away from the directory. Each cycle, the distances of the sharers, which are left
to be sent invalidation messages to, are calculated and then, the protocol sends
an invalidation message to the furthest sharing node. As such, the total cost
commonly will not exceed the delay of the invalidation-acknowledgment loop for
the furthest node. This mechanism sends out long-delay messages first to hide
the latency of short-range ones.

Take an XY routing mesh topology network for example, one intuitive way of
defining the distance between two nodes i and j is by the Manhattan distance:

Distancei,j = |xi − xj | + |yi − yj | (1)

where x and y are the coordinates of a node. To reduce the calculation latency in
hardware, we could approximate the distance by hops in one dimension, which
almost achieves the same improvement in practice.

3 Multi-target Invalidations

Observations showed that the number of cores sharing a cache line is usually
larger than one. It is especially the case for instruction cache lines which are
shared by almost all processor cores while running parallel programs. When in-
validating all the copies, coherence protocols conventionally send one invalidation
message for each sharing core respectively. This could create message bursts into
the network resulting in significant contention and negative impact on perfor-
mance. This problem will be exacerbated in on-chip network environment where
buffer resources are limited because of power and area budget.

Compacting multiple invalidation requests into one network packet could re-
duce invalidation messages in flight. The processor cores are divided into several
groups. Messages destined for the cores within a group potentially share one
routing path to some extent. As such, directories would send one invalidation
message for each group within which multiple cores are targeted. Routers in the
network deliver the multi-target invalidation to the specified group and dispatch
the message to the targets one by one. In conjunction with the mechanism de-
scribed in the above section, the multi-target invalidation for the furthest group
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should be sent first. This approach adds to each invalidation message a vec-
tor representing the targets in a group and the identification of that group. In
routers, each buffer entry of the invalidation channel needs only to be augmented
with a few extra bits, which is negligible.
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Fig. 3. Multi-target invalidations. Group G1 consists of the light shaded nodes and
group G2 consists of the heavy shaded nodes.

Again, we demonstrate the mechanism with an XY routing mesh network.
Figure 3 shows how multi-target invalidations are done. Cores in the same col-
umn form a group, because, with XY routing algorithm, messages for cores in
the same column would first go through the same path along X dimension (e.g.
messages for B and C from A share all the path from A to B). As illustrated,
when the directory in core A needs to invalidate copies in the L1 caches of cores
B, C, D and E, instead of sending out four invalidations respectively, it sends just
two messages for the two groups. Each message has two targets, and the result is
a 50% saving of the number of messages. After the message for A and B arrives
at the router attached with core B, the router will find it has multiple targets
and continue to send the message down to core C in parallel with invalidating
the cached copy in the core B.

4 Simulator and Workloads

We use a cycle-accurate execution-driven simulator to evaluate our proposed
mechanisms. The processor cores modeled in the simulator conform to the archi-
tecture of the Godson2 processor [7] which is a high performance microprocessor
implementing MIPS ISA and featuring 4-issus, out-of-order execution and non-
blocking caches, etc. We implement the directory-based write-invalidate cache
coherence protocol and on-chip network in significant detail to make the simula-
tor behave in strict accordance with the hardware implementation. This method-
ology provides accurate simulation results while at the cost of long simulation
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time. The simulator models a 16-core CMP with an on-chip network using mesh
topology and XY routing algorithm. We employ an aggressive implementation
of routers which take two cycles to forward a packet without contention. The
contention within the on-chip network is also simulated. The wires are optimisti-
cally assumed to take just two cycles to deliver a packet from a router to the
next. We believe that as the technology evolves, the speed of processor cores
will go further beyond that of wires, and the advantages of our mechanisms will
be more evident as wire delay increases. The detail architecture parameters are
summarized in Table 1.

Table 1. System configurations

Parameters Value

Number of cores 16

Processor 4-issue, out-of-order

Cache block size 32B

L1 I-cache 64KB, 4-way, 1-cycle latency

L1 D-cache 64KB, 4-way, 1-cycle latency

Shared L2 cache 8MB, 4-way, 4-cycle latency

DRAM latency 100 processor cycles latency

Network Topology 4*4 2-D mesh

Router 2 pipeline stages

Wire delay 2 processor cycles latency

To test our ideas, we employ a set of scientific applications consisting of seven
programs from the SPLASH-2 benchmark suite. The programs are run to com-
pletion, but all experimental results reported in this paper are for the parallel
phases of these applications. Table 2 presents the applications and the input
data sets we use in the evaluation.

Table 2. Applications and input data sets

Applications Problem sizes

FFT 256K complex data points

LU 512*512 matrix

Water nsquared (WATERNS) 512 molecules, 3 timesteps

Water spatial (WATERSP) 512 molecules, 3 timesteps

Cholesky D750

LU noncontiguous (LUNC) 128*128 matrix

Ocean 130*130 array, 1e-7 error tolerance

When evaluating the multi-target invalidation mechanism, we divide the cores
into four groups by columns. Four cores lying on the same column belong to one
group. Each multi-target invalidation message needs a 4-bit vector to represent
the four cores in a group and extra two bits to identify the group routed to.
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5 Results

This section describes the simulation results of applying both the two mecha-
nisms, compared with the baseline protocol.

Figure 4 depicts the distributions of the number of sharers when a block needs
to be invalidated. The home node of a cache block is not counted, as invalidating
the copy in the L1 cache of a block’s home node does not incur a message into
the network. As we can see, programs demonstrate various behaviors. Almost
all the data in FFT and ocean has just one sharer except for the home node.
We can predict that these two applications can gain little improvement as few
messages can be saved from multi-target invalidations. Some applications (like
LU, WATERSP and Cholesky) have modest number of sharers, but barely ex-
ceeds 5. The performance of these applications can be expected to boost. LUNC
is different from others as most of its data is shared by multiple cores, however,
the number of sharers also hardly surpasses 5.
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Fig. 4. Distributions of the number of sharers when a block needs to be invalidated

Reductions in cycles spent during invalidation process are shown in figure 5.
The two mechanisms reduced the average invalidation traffic overhead by 5%.
Among the applications, LU achieved the most improvement with nearly 8%
decrease in latency. This can be inferred from its distribution of number of
sharers. As we predicted, FFT and ocean barely have improvement. However,
the traffic overhead within LUNC has not been reduced as we expected from the
data in figure 4. We can explain the phenomena with figure 6. The mechanisms
have limited impact on overall performance as the dominant factor is memory
access latency.

Figure 6 presents distributions of the number of targets in each multi-target
invalidation message. In some applications, data is shared by several cores, how-
ever, the sharers are scattered around other than kept together in groups. So
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Fig. 6. Distributions of the number of targets in each multi-target invalidation message

each multi-target invalidation message is only responsible for few targets, de-
creasing its effect on reducing the overhead. This explains why LUNC receives
modest improvement as most of its multi-target invalidations aim for just 1 or
2 sharers.

6 Related Work

A large body of literature focuses on optimization techniques for cache coher-
ence protocols. [8,9] proposed adaptive coherence protocols for different data
sharing patterns. [10,11] effectively eliminated the overhead of remote misses by
making producers push data to consumers in advance, instead of fetching data
when consumers’ read misses actually happened. Lebeck and Wood [12] proposed
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Dynamic Self-Invalidation (DSI) to automatically write back the writer’s dirty
copy of data at synchronization boundaries so as to save the coherence messages
occurred when a sharer subsequently reads the same cache line. Lai et al. [13]
extended DSI with last-touch predictor to invalidate the data more timely and
avoid potential message bursts into the network.

On-chip networks also attract considerable attention. Researchers aim to re-
duce the transmission latency by shortening the depth of router pipeline stages
and alleviate contention with adaptive routing algorithms [14,15].

All the researches mentioned above devote to their own field. Recently, how-
ever, we have noticed some work that demonstrated the benefits of coupling
cache coherence protocols with underlying networks more tightly. Noel et al.
[16] proposed embedding directories within each router node to satisfy requests
with nearby data copies. Cheng et al. [17] leveraged wires of different power and
latency properties to delivery different coherence protocol messages depending
on their bandwidth-latency requirements.

7 Conclusions and Future Works

In this paper, we proposed two techniques to reduce invalidation traffic overhead
in CMPs within which processor cores are connected by on-chip networks. We
are motivated by one major difference between DSMs and CMPs: as far as
flexibility is concerned, traditional cache coherence protocols of DSMs are not
designed for a dedicated network missing some optimization opportunities; as
for CMPs, parameters of the on-chip network are determined at design time, so
we can jointly consider the both. Distance aware optimization chose to dispatch
invalidations by the order of how far the sharers are away from the directory.
Compared with oblivious policy, this mechanism guarantees long latency events
to be processed first so as to lower overall overhead. Multi-target invalidations
convey multiple invalidation messages for a group of cores within one network
message. This approach can decrease invalidation traffic and alleviate message
bursts into the network when crowd of cores share a cache line.

We conducted simulation on a 16-core CMP simulator using a subset of
SPLASH-2 benchmark suite. The experimental results showed that the two
mechanisms together reduced the average invalidation traffic overhead by 5%,
up to 8%.

In the future, we will optimize the simulator to support more number of cores.
As for now, the simulator models the coherence protocol in significant detail, so
it takes prohibitively long time to simulate over 32 cores. We will refine the
implementation in a more efficient and configurable way, and we believe that
these two approaches will achieve more notable improvement in CMPs containing
much more cores.
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Abstract. In this paper, we introduce a new variant of WS which makes any 
adaptive routing algorithm augmented with virtual channels tolerate multiple 
fault regions. More specifically, we propose a mathematical model for this 
switching mechanism using Markov chain to calculate the probability of header 
message blocking and to capture the traffic rates on channels in the presence of 
faulty components. Simulation results based on the network topology confirm 
the validity of the analytical approximation and demonstrate the localizer 
efficiency. 

1   Introduction 

The switching method determines the way messages visit intermediate routers and 
one of the most important parameters to improve the network performance. The 
Wormhole Switching (WS) is a popular technique used to provide inter-processor 
communication for contemporary communication systems. It divides a message into a 
few flits and spreads them over several nodes. As the header flit containing routing 
and control information advances along a specific route; the sequential flits follow it 
in a pipelined fashion [1]. Wormhole messages, therefore, realize very good 
performance, but are prone to deadlock in the presence of faults. Whenever the header 
flit cannot find a route to the destination because of busy/faulty links/nodes, the 
remaining flits stop advancing and have to wait until the channel is empty or repaired. 
Otherwise, the message has to be removed. This behavior of WS can lead to situations 
where the routing header can become blocked, no longer make progress, and hence 
cause the network to become deadlocked.  

In this correspondence, we propose the use of a new variant of WS flow control 
mechanism for fully adaptive routing in pipelined networks. The paper contributes 
this flow control mechanism at the switching layer. Routing protocols can be designed 
such that in the vicinity of faulty components, messages use the proposed style where 
backtracking can be allowed to avoid failures and deadlock configurations. The 
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proposed switching mechanism does not require any complex scheme to provide 
fault-tolerance capability, and does not require additional virtual channels for routing 
messages around the faulty components. The hardware amount for the proposed 
method is almost equal to that for the WS, making the implementation very feasible. 
Moreover, we develop a mathematical model to investigate the efficiency of the 
proposed mechanism coupled with virtual channels and fully adaptive routing in the 
presence of faulty components. The model makes latency predictions that are in good 
agreement with those obtained from simulation experiments. Recently, a crude 
simulation experiment [2] based on WS has been proposed to capture the effects of 
Duato’s Protocol [1] in the presence of random failed links. The proposed model, 
however, is different in three aspects from that reported in [2]. First, it uses theoretical 
results of probabilistic analyzes and queuing theory to present a new analytical model 
for computing the message latency of a fault-tolerant switching based on the WS. 
Second, it can be used both for Duato’s methodology and fully adaptive routings. 
Third, it can capture the characteristics of the most common fault patterns and 
calculate the probability of a message confronting such patterns.     

This article includes five main sections. Section 2 introduces a few definitions, and 
the node structure. The proposed flow control mechanism is also introduced in this 
section. Section 3 presents the derivation of the analytical model. Section 4 validates 
the mathematical model through simulation experiments. Finally, Section 5 concludes 
the paper with future research directions.  

2   Preliminaries 

2.1   Node Configuration 

Although the Generalized WS can be used in any topology, the present mathematical 
model is discussed in the context of the torus due to the popularity of this topology in 
current interconnect networks. The class of networks considered in this paper is the 
torus connected, bidirectional, 2 dimensional (2-D). A k k×  torus is a direct network 
with 2N k= nodes; k  is called the radix. Each node can be identified by a 2-digit 
radix k  address ( )1 2,a a . Nodes, with address ( )1 2,a a and ( )1 2,b b  are connected if 
and only if ( )1 2 1 moda a k= +  or ( )1 2 1 modb b k= + . Each node consists of a 

Processing Element (PE) and router. A node is connected to its neighboring nodes via 
the input and output channels. The injection/ejection channel is used by the processor 
to inject/eject messages to/from the network. 

2.2   The Proposed Switching Mechanism 

In this section, we consider a new variant of WS by improving it to have backtracking 
capability. From low to moderate number of faults, the proposed switching 
mechanism has the advantage of considering faulty nodes/links over WS, which can 
lead to deadlock-free fault-tolerant routing protocol whose performance is superior to 
WS with comparable reliability. Since the header message is followed immediately by 
data flits in WS, the header cannot backtrack to the preceding node. Thus, if the 
header cannot progress due to a faulty component, the message is blocked in place 
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indefinitely, holding buffer resources and blocking other messages. This situation can 
eventually result in a deadlocked configuration of messages. While techniques such as 
adaptive routing can alleviate the problem, it cannot by itself solve the problem. In the 
proposed approach, on the other hand, when the header encounters a faulty node or 
experiences blocking because all the required virtual channels are busy, it releases the 
last reserved virtual channel and backtracks to the preceding node by copying  
the routing information into one fictive flit followed immediately by it. By storing the 
routing information of the header into a fictive flit, the fictive flit taking the role of the 
header, goes back to the preceding node, and searches for an alternative path to 
progress towards its destination.  

We will now outline the modifications that have to be made in order to enable 
backtracking of WS. We assume that the header is in fact a part of the message body, 
namely we insert ( )0K K ≥  fictive flits, which include no information, between the 
header and the first real data flit. Thus, the distance between the header and the first 
data flit is always at most K  hops. This means that the number of new flits including 
the header itself is at most K . When 0K = , the flow control mechanism is 
equivalent to the WS mechanism without backtracking capability, while large values 
of K  can ensure path set-up prior to data transmission if a path exists. Intermediate 
values of K  can permit the data flits to follow the header at distance, allowing the 
header or a fictive flit to backtrack. Therefore, when the header (fictive flit) reaches 
the destination, the first data flit arrives shortly thereafter rather than immediately as 
in WS. It is apparent that the number of fictive flits indicates the maximum number of 
backtrackings that a message can perform to avoid the faulty components. The less 
number of fictive flits in a message results in the less backtracking capability. 
However, with the large values of K , substantial traffic can be introduced into the 
network, dominating the effect of an increased overhead associated with the path set-
up time. Hence, the selection of an optimal value of K  is dependent upon the 
network traffic and the fault patterns, and is a trade-off between the traffic, and the 
increased backtracking that occurs during the path construction in network. 

3   Mathematical Model   

In this section, we describe an analytical model for assessing the performance of WS 
with fictive flits in an adaptively-routed torus. The most important performance 
metric in our model is the mean message latency. 

3.1   Assumptions 

The model is based on the following assumptions, which are accepted in the literature 
[3-10], and are listed below.  

• Nodes generate traffic independently of each other, following a Poisson 
process with an average rate of nodeλ  messages/ node/cycle. 

• Message destination nodes are uniformly distributed across the network. 
• The message length is fixed at M  flits, each of which requires one cycle to 

cross from one router to the next.  
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• The local queue at the injection channel in the source node has infinite 
capacity. Messages at the destination node are transferred to the local PE one at 
a time through the ejection channel.  

• ( )1V ≥  virtual channels per physical channel are used. When there are more 
than one virtual channels available that bring a message closer to its 
destination, one is chosen at random. 

• Nodes (processors) are more complex than links and thus have higher failure 
rates [1-4]. So, we assume only node failures.  

• Fault patterns are static [1, 2, 4]; distributed uniformly through the network, 
and do not disconnect the network. 

• Each node failure occurs randomly and independently to the other ones with 
probability θ . 

• Messages are assumed to always follow the shortest paths in the absence of 
faults.  

In the sequel, we will derive a mathematical model that approximates the behavior of 
2-D torus communication system using the proposed switching mechanism 
augmented with virtual channels and fully adaptive routing around fault regions.  

3.2   Communication Analysis  

The mean message latency is composed of the mean network latency, T , which is the 
time to cross the network and the mean waiting time seen by the message in the 
source node, sW , before entering the network. However, to capture the effects of 
virtual channels multiplexing, the mean message latency has to be scaled by a factor, 
say V , representing the average degree of virtual channels multiplexing, that takes 
place at a given physical channel.  Therefore, the mean message latency can be 
approximated as [6] 

( )sMean Message Latency T W V= +                                (1) 

Under the uniform traffic pattern, the average number of channels that a message 
visits along a given dimension and across the network, k , D  respectively, are given 
by Agarwal [7] 

0    (mod 2)
4
1 1
( ) 1 (mod 2)

4

k
k

k
k k
k

⎧⎪ ≡⎪⎪⎪= ⎨⎪⎪ − ≡⎪⎪⎩

,   2D k=                    (2) 

where  ≡  signifies the congruence relation.   

Calculation of the Traffic Rate on a Network Channel  

Fully adaptive routing allows a message to use any available channel that brings it 
closer to its destination resulting in an evenly distributed traffic rate on all network 
channels. Calculation of the traffic rate of messages received by each channel, 
channelλ , can be approximated as follows. The header and the fictive flits may have to 
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make more than one attempts before the path is successfully constructed. On 
average, C , channels (is determined below) are visited to establish a path. Due to the 
uniformity of traffic inside the network, the message arrival process exhibits similar 
statistical behavior across all network channels. Thus, the channel arrival rate can be 
found by dividing the total channel arrival rates over the number of non-faulty 
channels in the network. In a 2-D torus, each node has ( )24 1 θ−  non-faulty output 
network channels. Thus, the traffic rate arriving at a channel can be written as 

( )( )2/ 8 1channel nodeCλ λ θ= −                                            (3) 

Calculating the Mean Time to Set-Up a Path 
When the header finds all potential virtual channels at a given intermediate node 
busy, or it can not find a network path because of faulty components, the header is 
forced to backtrack to the preceding node by copying the routing information into the 
fictive flit followed by it. The fictive flit then takes the role of the header message and 
can resume searching for an alternative path. In order to compute the mean time, rC , 
to establish a path for an r -hop message (i.e., a message that needs to make r hops 
to cross from source to destination), the header and actions (e.g., advancing and 
backtracking) are modelled as a Random Walk problem [10] where the associated 
Markov chain is illustrated in Fig. 1. We wish to propose a mathematical model to 
evaluate the performance behaviour of the proposed switching mechanism. To do so, 
we will consider a somewhat unusual labelling of the nodes. A state in the Markov 
chain represents the current location (i.e., node) of the header message along its 
network path. State ( ),0M Kω− +  denotes that the header is at the source node. We will 

assume that the last data flit is at node with label ( )M K− +  and the destination 
would be at the same node with label r , meaning that the destination is r  hops away 
from the header. The message needs to cross 1r K+ −  intermediate nodes to reach 
its destination. We let ,i jω  be the state denoting that the last data flit is M K i+ +  

hops away from the source, and the header message is M K j+ +  hops far from the 
source node. A transition out from state ,i jω  to 1, 1i jω + +  implies that the header has 

succeeded in reserving the next required virtual channel that brings it one hop closer 
to its destination, and this occurs with the probability ( )1 j hitPb P− + ; where jPb  

and hitP  denote the probability of header blocking and the probability of facing fault 
patterns, respectively. When the faults are randomly distributed through the network, 
the parameter hitP  is equal to an independent node failure probability (i.e., θ ). 
However, in the vicinity of failures, hitP  must be calculated in a different manner. 
The details of calculation of hitP  using adaptive routing scheme have been reported in 
[4]. Similarly, a transition out from state ,i jω  to , 1i jω −  corresponds to the case where 

the header has encountered blocking/faulty situation and one of the fictive flits has 
been used. The transition rate is the probability, j hitPb P+ . Further, a transition out 

from state ,i jω  to ,i jω  happens when all the fictive flits have been consumed and the 

header message has stopped at the node corresponding to state ,i jω .  
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Each row ( )0g g K≤ ≤  in the Markov chain corresponds to the number of fictive 

flits that are already used. It is evident from the figure that any state ,i rω  is a final 

state. Let ,i jC  denote the expected time interval that the system has reached at state 

,x rω  , r M K x r M− − ≤ ≤ − , starting form state ,i jω . Given that the header 

message requires one cycle to move from one node to the next, one can easily check 
that the following difference equations hold for  ,i jC .  

( )( ) ( )

( )( )( ) ( )

, 1, 1 , 1

1, 1 ,

0        

1 1        1

1 1      

i j j hit i j j hit i j

j hit i j j hit i j

j r

C Pb P C Pb P C j M i

Pb P C Pb P C j M i

+ + −

+ +

⎧⎪ =⎪⎪⎪⎪= − + + + + ≥ + +⎨⎪⎪⎪ − + + + + = +⎪⎪⎩

      (4) 

Let the initial state be ( ),0M Kω− + , the mean path set-up time can be calculated as 

( ),0r M KC C− +=                                                 (5) 

We now give some insight in order to illustrate the problem of calculation of  

( ),0M KC− + . We present the following algorithm in details and analyze its complexity. 
 

00 Algorithm I  

01 Input: An array ,i jC  

02 Output:  A value indicating the mean path set-up time 
03  for ( )i M K← − +  to 1r M− −  do  

04    ,i i MC r i M+ ← − −   

05  for i r M K← − −  to r M−  do  

06    , 0i rC ←  

07  for 1i ←  to K  do 
08    for 1j r← −  downto i K−  do 

09      ( )( ) ( ), 1, 1 , 11 1j M i j j hit j M i j j hit j M i jC Pb P C Pb P C− − − − + + − − −← − + + + +    

 

Lemma 1: Algorithm I correctly computes the quantity of ,i jC  for all ,i j  with 

proviso j i M K≤ + + , in time ( )( )O K r K+ . 
 

Proof: ,i i MC r i M+ = − −  is followed from the fact that the mean time to set-up a 

path in the traditional WS is the same as the distance between the destination and the 
header message. Now, we prove that ,j M i jC − −   is obtainable, when 1 i K≤ ≤  and 

1 1j r≤ ≤ − . According to Eq. (4), we get  

( )( ) ( ), 1, 1 , 11 1j M i j j hit j M i j j hit j M i jC Pb P C Pb P C− − − − + + − − −← − + + + +  

It is clear that, 1, 1j M i jC − − + +  and  , 1j M i jC − − −   are already computed in the previous 

steps and therefore ,j M i jC − −  could be computed. To calculate the time complexity of 
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the Algorithm I, we note that the number of times in which the for loop in line 8 of 
algorithm will be executed is at most 1r K+ − . Thus, using the formula above, we 
obtain a bound of ( )( )O K r K+  on the time complexity.                                           ♦ 

Averaging over the ( )1 1N θ− −  possible healthy destination nodes in the network 

gives the mean time to set-up a path, C , from source node S  to destination node  
D  as      

( ) { }\

1
1 1 rC C

N θ ∈
=

− − ∑
D G S

                                         (6) 

where G  is the set of all surviving nodes in the network and the operator "\" denotes 
the set difference between G and D . In what follows, we will describe the 

calculation of the following quantities: T , jPb , sW , and V .    

3.2.1   Calculating the Mean Network Latency 
Since, the torus topology is symmetric and message destinations are uniformly 
distributed across the network the arrival patterns of messages (and the service times 
seen by messages) at the network channels exhibit similar statistical behaviour. Let 

rT  denote the mean network latency seen by an r -hop message.  In the proposed 
switching method, the mean network latency consists of two parts: one the time to 
setup a path ( rC ), and the other, the delay due to the actual message transmission 

time ( rT ). Hence, the network latency of an r -hop message can be written as  

( )1r rT M K C= + − +                                         (7) 

where rC  denotes the mean time to set-up a path for an r -hop message and M  is 
the message length. Note that in Eq. (7) the term ( )1K −  accounts for ( )1K −  
cycles that are required to backtrack in the direction leading to the real data flits. For a 
given non-faulty node in the network, the mean latency seen by a message originated 
at that node to enter the network,T , is equal to the average of all rT  resulting in 

( ) { }\

1
1 1 rT T

N θ ∈
=

− − ∑
D G S

                                     (8) 

Calculating the Probability of Header Message Blocking 

Examining the Eqs. (4) and (6) reveals that the probability of blocking, jPb , is 

required to calculate C . In this section, we compute the probability of header 

message blocking. The probability that the header message is blocked at a given 

channel depends on its current network position. This is because the number of 

alternative paths that the header can take to progress is determined by the number of 

hops made by the header, and the way that these hops are distributed among the  
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dimensions [6]. Let jPb ′  denote the probability that the header of an ( )M K r+ + -

hop message is blocked after making j  hops. It is clear that j j M KPb Pb + +′= . 

Therefore, in order to compute jPb , we must only evaluate jPb ′  for each j . To this 

end, let t
jΘ  be the probability that the header message has entirely crossed 

( )0 1t t≤ ≤  dimensions after making j  hops.  The details of calculation of  
t
jΘ  have been developed elsewhere [6]. We recollect briefly here the main equations 

for the calculation of t
jΘ . The number of channels, and thus the number of  

virtual channels, that the header can select at a given hop depends on the number  

of dimensions still to be visited. When the header has made 
( )0 1j j M K r≤ ≤ + + −  hops, these hops can be a combination of ( ),x y  hops, 

with x  and y  being the number of hops achieved in the first and second dimensions 

respectively, where ( ) ( ), 0 ,x y j x y k+ = ≤ ≤ . To determine the probability that 

the header message has crossed all the channels of one dimension, two cases need to 

be considered: 

(1) When(0 )j k≤ < , the header has not yet crossed any dimension since it has 

to make k  hops along each dimension. Therefore, the header can choose 
among virtual channels of both dimensions.  

(2) When( 1)k j M K r≤ < + + − , the number of ways to distribute these 
hops along the two dimensions is ( 1)M K r j+ + − + . In only two cases, 
( , )x k y j k= = −  and ( , )x j k y k= − = , the header has crossed all 
channels of one dimension and thus, all the remaining hops have to be made in 
other dimension.  

So, when the header has made j  hops, the probability that there remains only one 
dimension to be crossed, 

j
Pϕ , can be written as 

0               0

2
1

1
j

j k
P

k j M K r
M K r j

ϕ

⎧ ≤ <⎪⎪⎪⎪= ⎨⎪ ≤ < + + −⎪⎪ + + − +⎪⎩

         (9) 

When the header arrives at the j -th hop channel, it has already made ( )1j −  hops 
and has entirely crossed, say, ( )0 1t t≤ ≤  dimensions. At its next hop, the header 

message can select any available ( )2 t V−  virtual channels from the remaining 
( )2 t−  dimensions. Blocking occurs when all possible virtual channels at the 
remaining dimensions to be visited are occupied. If VP  (given by Eq. (14)) denotes 

the probability that V virtual channels at a given physical channel are busy, the 
probability jPb ′ , that the header is blocked is given by                 

1 2
0

( ) 0 1t t
j j Vt

Pb P j M K r−
=

′ = Θ ≤ ≤ + + −∑                 (10) 
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where t
jΘ  is the probability that the header has entirely crossed t  dimensions along 

on its j -hop path and is given by        

1 0

1
j

j

t
j

P t

P t

ϕ

ϕ

− =⎧⎪⎪Θ = ⎨⎪ =⎪⎩
                                    (11) 

3.2.2   Calculating the Mean Waiting Time at the Source Node 
In this section, we compute the average waiting, sW , that a message experiences at the 
source node before entering the network. To this end, the injection virtual channel in 
the source node is treated as an M/G/1 queuing system [9]. Since a source node 
generates messages with a mean rate, nodeλ , and a message can enter the network 
through any of the V  virtual channels, the mean arrival rate at each injection virtual 
channel is /node Vλ . Under the uniform traffic pattern using adaptive routing results 

in the mean service time seen by messages at all source nodes being identical and 
equal to the mean network latency, i.e., T  [6]. To simplify the development of our 
model while maintaining a good degree of accuracy in predicting the message latency 
we follow a suggestion by Draper and Ghosh [8] for computing the variance of the 
service time distribution. Since a message makes, on average, D  hops to reach its 
destination, the minimum path set-up time is 1D K+ − , where K  indicates the 
number of backtrackings permitted to one message transmission. So, the minimum 
network latency seen by the message is 1M K D+ + − . Applying the Pollaczek-
Khinchine (P-K) mean value formula [9] with an approximated variance 

2( 1)T M K D− − − +  [8] yields the mean waiting time seen by a message at the 

source node as  

( ) ( )( )2 2( 1) / 2s node nodeW T T M K D V Tλ λ= + − − − + −           (12) 

3.2.3   Calculating the Mean Degree of Virtual Channels Multiplexing 
The probability, ( )0vP v V≤ ≤ , that v  virtual channels at a given physical channel 
are busy can be determined using a Markovian model (details of the model can be 
found in [4-6]). In the steady state, the model yields the following probabilities [5]. 

( )

( )

                                       0 1

(1 )                    =

v
channel

v V
channel channel

T v V
Q

T T v V

λ

λ λ

⎧⎪ ≤ ≤ −⎪⎪= ⎨⎪ −⎪⎪⎩

          (13) 
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∑                (14) 

In virtual channel flow control, multiple virtual channels share the bandwidth of a 
physical channel in a time-multiplexed manner. The average degree of virtual channel 
multiplexing, that takes place at a given physical channel, can be found to be [5] 
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1 1

/
V V

v vv v
V v P v P

= =
= ∑ ∑                                         (15) 

4   Model Validation 

To further understand and evaluate the performance issues of the proposed switching 
mechanism, we have used a discrete-event simulator that operates at the flit level. For 
each simulation experiment, statistics were gathered for a total number of 100 000 
messages. Statistic gathering was inhibited for the first 10 000 messages to avoid 
distortions due to the start-up transient. The results of simulation and analysis for the 
8×8 (N = 64) and 20×20 (N = 400) networks with message length M = 32 and 64 flits, 
number of fictive flits K= 3 and 6, probability of facing fault pattern 0.1, 0.25hitP =  
and V =1, 6 virtual channels per physical channel are depicted in Fig. 2.  
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Fig. 2. Comparing the analytical model and flit-level simulation experiments in the 8×8 and 
20×20 torus networks using Generalized Wormhole Switching with message length 

32, 64M = flits, 1, 6V = virtual channels per physical channel, number of fictive flits 
3, 6K = , and probability of facing fault patterns 0.1, 0.25hitP =  

 
In all graphs, the horizontal axis represents the traffic generation rate while the 

vertical axis shows the mean message latency in crossing from source to destination. 
The figure indicates that the analytical model predicts the mean message latency with 
a good degree of accuracy in all regions. However, some discrepancies around the 
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saturation point are apparent. This is a result of the approximations made when 
constructing the analytical model, e.g. the approximation used to estimate the 
variance of the service time distribution at a channel. This approximation greatly 
simplifies the model by avoiding the computation of the exact distribution of the 
message service time at a given channel. 

5   Conclusion 

In this paper, we have proposed a new variant of Wormhole Switching (WS) for 
supporting inter-processor communications in interconnect networks due to its ability 
to preserve both communication performance and fault-tolerant demands in such 
systems. More specifically, we have proposed a mathematical model to evaluate the 
relative performance merits of this switching in tori when coupled with virtual 
channels and fully adaptive routing around fault regions. The proposed switching 
mechanism does not require any complex scheme to provide fault-tolerance 
capability, and does not require additional virtual channels for routing messages 
around the faulty components. The router designed to support the proposed 
mechanism requiring the same amount of hardware as a router supporting WS, makes 
the implementation very feasible. Future efforts are redesigning the router for 
supporting the dynamic fault-tolerance version of the proposed switching mechanism, 
and determining the optimal number of the fictive flits by means of the mathematical 
expressions. 
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Abstract. MPI (the Message Passing Interface) continues to be the
dominant programming model for parallel machines of all sizes, from
small Linux clusters to the largest parallel supercomputers such as IBM
Blue Gene/L and Cray XT3. Although the MPI standard was released
more than 10 years ago and a number of implementations of MPI are
available from both vendors and research groups, MPI implementations
still need improvement in many areas. In this paper, we discuss several
such areas, including performance, scalability, fault tolerance, support
for debugging and verification, topology awareness, collective commu-
nication, derived datatypes, and parallel I/O. We also present results
from experiments with several MPI implementations (MPICH2, Open
MPI, Sun, IBM) on a number of platforms (Linux clusters, Sun and
IBM SMPs) that demonstrate the need for performance improvement in
one-sided communication and support for multithreaded programs.

1 Introduction

MPI (the Message Passing Interface) is a widely used paradigm for parallel pro-
gramming. It is used across the entire spectrum of parallel machines—from small
Linux clusters to the largest parallel machines in the world such as IBM Blue
Gene/L and Cray XT3. The MPI standard has existed for a long time—MPI-1
was released in 1994 and MPI-2 in 1997—and a number of MPI implementations
are available. Free, portable implementations include MPICH, MPICH2, MVA-
PICH, MVAPICH2, LAM, and Open MPI. In addition, all computer-system and
network-hardware vendors (such as IBM, Cray, Sun, HP, SGI, Intel, Microsoft,
NEC, Hitachi, Fujitsu, Myricom, Quadrics, Mellanox, and QLogic) provide im-
plementations of MPI. (Many of the vendor implementations are derived from
the public-domain implementations.) Although MPI implementations have ma-
tured over the years, improvements are still needed in a number of areas. It is
not sufficient just to provide the lowest possible ping-pong latency and high-
est possible large-message bandwidth between two processes. Users expect good
performance across all aspects of the MPI standard.

In this paper, we discuss several areas in which MPI implementations still
need improvement. These include performance, scalability, fault tolerance, sup-
port for debugging and verification, topology awareness, collective communica-
tion, derived datatypes, parallel I/O, one-sided communication, and support for
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multithreaded programs. For the last two areas, we also present results from ex-
periments with several MPI implementations (MPICH2, Open MPI, Sun, IBM)
on a number of platforms (Linux clusters, Sun and IBM SMPs) that demonstrate
the need for performance improvements.

2 Areas Needing Improvement in MPI Implementations

Below we discuss in broad terms several areas in which better support is needed
from MPI implementations. It is not a comprehensive list, but it covers most of
the important topics.

2.1 Basic Performance

The holy grail of message-passing performance is to achieve sub-microsecond la-
tency for short messages. That goal has already been achieved on shared-memory
machines [4] but not yet on distributed-memory systems. In addition to achiev-
ing low latency and high bandwidth on ping-pong benchmarks, it is essential
to deliver good performance across the entire range of message sizes, avoiding
sharp jumps in between. However, this is not the case in many MPI implemen-
tations that use a different protocol for short and long messages (eager versus
rendezvous delivery) to minimize the need for internal buffering. An example
in shown in Figure 1: On the IBM Blue Gene/L, a large jump occurs around
1024 bytes because of the transition from eager to rendezvous protocol. Smooth-
ing out such performance jumps is a difficult challenge because of the tradeoffs
between performance and resource consumption.

Another basic performance requirement is that a user should be able to achieve
better (or equal) performance by using a single MPI function than by using a
combination of other MPI functions that can implement the same functional-
ity [29]. This requirement is not met in some cases. For example, in Figure 1, a
user with a 1500-byte message will achieve better performance by sending two
750-byte messages. More such examples can be found in [29].

2.2 Scalability

MPI implementers must bear in mind that the number of processes in an MPI
application may no longer be limited to a few hundred or a few thousand. Ma-
chines with much larger numbers of processors already exist. For example, the
IBM Blue Gene/L at Lawrence Livermore National Laboratory has 131,072
processors. Larger systems are expected in the near future. As a result, MPI
implementations must pay close attention to aspects of their code that grow
linearly with the number of processors. Such aspects include the size of inter-
nal data structures, the number of connections established during MPI Init,
and the complexities of algorithms used anywhere in the implementation. Con-
necting all processes to each other in MPI Init is no longer an option. If the
underlying network requires connections, they must be set up only if and when
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Fig. 1. Measured performance of short messages on IBM Blue Gene/L. Note the large
jump around 1024 bytes; this is the transition from eager to rendezvous protocol in the
MPI implementation.

needed, for example, when a process first tries to communicate with another pro-
cess (MPICH2 already does this). Similarly, connections may need to be closed
dynamically if they remain idle for a long time; and collective-communication
algorithms, including all-to-all, may need to limit the number of connections.

2.3 Fault Tolerance

Closely tied to scalability is the need for increased tolerance to failure. As systems
get larger, the probability of failure of components is larger. MPI implementa-
tions must improve their ability to handle failures, such as broken connections
and dead processes, to the extent possible. A number of research efforts in fault-
tolerant MPI implementation exist [2,7,13]. However, production MPI imple-
mentations need to improve their support for fault tolerance. In addition, fault
tolerance often comes at a cost, and a careful balance must be struck between
performance and fault tolerance.

2.4 Support for Debugging and Verification

MPI applications can be difficult to write and equally difficult to debug. To help
application programmers, MPI implementations must provide better support
for tools that help with debugging and verification. For example, MPI imple-
mentations must integrate better with parallel debuggers (e.g., TotalView) [6,9].
Auxiliary tools that help in debugging are also useful. An example is the collchk
library [8] provided with MPICH2 that can check for inconsistencies in param-
eters passed to collective functions on different processes, such as the root for
an MPI Bcast. In a large and complex application with many MPI functions,
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collchk has helped find bugs that would otherwise have been very difficult to
catch. A similar tool is described in [31]. Other tools also exist for checking pro-
gram correctness, such as MARMOT [16], Umpire [32], and Intel Trace Analyzer
and Collector [12], but more work is needed in this area.

Parallel programs are also prone to suffer from deadlocks and race conditions
that may remain undetected for a long time because they are timing depen-
dent [17]. For example, the byte-range locking algorithm proposed in [27] has a
race condition that results in deadlock. It was discovered only a year later with
the help of formal-verification methods [18]. Easy-to-use tools that use formal
verification would be invaluable.

2.5 Virtual-to-Physical Topology Mapping

Today’s large parallel machines, such as IBM Blue Gene/L and Cray XT3, have
nodes arranged in a 3D torus topology. On such machines, it is more efficient to
have MPI processes mapped on the nodes in a way that results in the major-
ity of the communication taking place between nearest neighbors in the torus.
MPI defines process-topology functions that allow users to create virtual process
topologies and organize their communication among nearest neighbors on such
topologies. However, the MPI implementation must efficiently map the virtual
topology onto the physical processor layout such that nearest neighbors in the
virtual topology are also nearest neighbors in the physical topology. This effi-
cient mapping is often lacking in MPI implementations and must be provided.
Applications may also need MPI COMM WORLD to be mapped appropriately on the
machine.

2.6 Derived Datatypes

Derived datatypes in MPI allow users to specify noncontiguous memory layouts
and thereby communicate noncontiguous data with a single function call. They
are intended to provide higher performance than having the user pack all the
data contiguously before calling MPI. However, MPI implementations have his-
torically performed very poorly with derived datatypes, to the extent that users
don’t even think about using them. This situation defeats the purpose of having
derived datatypes in the standard. Although some research efforts have opti-
mized the processing of derived datatypes [21,30], their performance still often
lags behind that of manual packing. One promising effort demonstrated higher
performance than user packing by exploiting knowledge of the memory archi-
tecture of the machine and doing memory copies efficiently [5]. However, this
work is yet not incorporated in the official release of MPICH2. More research,
development, and incorporation into widely used MPI implementations clearly
is needed for derived datatypes.

2.7 Collective Communication

MPI collective communication functions, such as broadcast and reduce, play
a big role in helping applications achieve good performance. Although a lot of
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research has been done on collective communication algorithms [1,3,28] and some
implementations have incorporated optimized algorithms [19,26], more work is
still needed in some areas. For example, with the advent of multicore chips, MPI
applications will routinely have multiple processes on a single node connected
with multiple processes on other nodes by an interconnection network. Therefore,
collective communication algorithms must be designed to effectively use such
a hierarchical communication topology. Although research has been done on
topology-aware collectives [14,15,22], not all production implementations have
incorporated such algorithms yet. Furthermore, optimized algorithms are needed
for the entire set of collectives in MPI, not just a select few.

The best algorithm for a particular collective communication function often
depends on the message size and number of processes. In MPICH2, for example,
the MPI collective functions use multiple algorithms, and one of them is selected
for a specific message size and number of processes [26]. However, the cutoff
points for switching between algorithms are based on measurements performed
some time ago on one platform. They may not be right for other platforms. A
better approach is needed that determines the right cutoff points for the specific
machine being used. Dynamic tuning of algorithms may also be needed.

2.8 Parallel I/O

MPI-2 includes an interface for parallel file I/O, commonly referred to as MPI-
IO. The most commonly used implementation of MPI-IO is ROMIO [20,24]. To
our knowledge, almost all MPI implementations, except IBM’s MPI for the SP,
use ROMIO as the basis for MPI-IO. Although ROMIO has many optimizations
that improve I/O performance substantially, such as data sieving and collective
I/O [25], more work is needed in improving those algorithms and selecting the
right internal buffer sizes for I/O and the right number of I/O aggregators on
large systems. Applications would also benefit from a production-quality client-
side caching system that can take advantage of the default weak consistency
semantics of MPI-IO. Furthermore, many implementations do not yet support
the portable external32 data format and user-defined data representations that
are part of the MPI standard. These features are needed for standards compliance
and for being able to write files that can be read on any architecture.

In the following sections, we discuss in greater detail two other areas needing
improvement, namely, one-sided communication and support for multithreaded
programs.

3 One-Sided Communication

The MPI-2 standard added one-sided communication operations to MPI. These
operations offer a different programming model from the regular MPI-1 point-
to-point operations: A process can directly write to or read from the memory
of a remote process via put and get operations. A key feature of MPI one-sided
communication is that data transfer and synchronization are separated. This
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Fig. 2. Performance of one-sided communication for halo exchange on Sun Fire with 16
processes (top) and IBM p655+ with 7 processes (bottom). putall is the fence version
with all assert options, putpscwalloc is the post-start-complete-wait synchronization
with MPI Alloc mem, putlockshared is passive target with shared locks, and putlock-
sharednb omits the barrier that is necessary to ensure completion at the target.

feature allows multiple transfers to use a single synchronization operation, thus
reducing the total overhead. MPI supports three synchronization methods: fence
(collective synchronization), post-start-complete-wait (only communicating pro-
cesses synchronize), and passive target (only the origin process calls lock-unlock
functions).

To test how MPI implementations perform for one-sided communication, we
wrote a benchmark that mimics the common “halo exchange” (or ghost-cell
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exchange) operation in applications that approximate the solution to partial dif-
ferential equations. The code for this communication pattern, using MPI point-
to-point communication, is as follows.

for (j=0; j<n_partners; j++) {
MPI_Irecv( rbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[j] );
MPI_Isend( sbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[n_partners+j] );
}
MPI_Waitall( 2*n_partners, req, MPI_STATUSES_IGNORE );

We wrote a number of versions of this benchmark with one-sided communication
and using all three synchronization mechanisms. We ran the benchmark on a Sun
Fire SMP at the University of Aachen and an IBM p655+ SMP at the San Diego
Supercomputer Center using the native vendor MPI implementations (Sun and
IBM).

Figure 2 shows a subset of the results on the Sun and IBM machines. The
results on the Sun machine indicate that it is possible to get good performance
with one-sided communication; in fact, on this system the performance with
lock-unlock synchronization is better than with point-to-point communication.
On the other hand, the IBM system performs very poorly for one-sided commu-
nication. With eight processes on an eight-node SMP, the one-sided communica-
tion performance was on the order of forty times slower than the point-to-point
performance (data not shown). With seven processes on the same eight-node
SMP, the one-sided communication performance is still poor (as shown in Fig-
ure 2) but an order of magnitude faster than with eight processes. The significant
change in performance between eight and seven processes suggests that a thread
is used for implementing the one-sided communication operations and that the
implementation is not prepared to handle the case where there are more threads
than processors. The results on the IBM machine demonstrate that efforts are
needed to improve the performance of MPI one-sided communication.

Additional results for other MPI implementations and platforms can be found
in [11].

4 Efficient Support for MPI THREAD MULTIPLE

MPI-2 allows users to write multithreaded MPI programs and defines the interac-
tion between MPI and threads. MPI implementations that support the highest
level of thread safety for user programs, MPI THREAD MULTIPLE, are becoming
widely available. Thread safety does not come for free, however, because the
implementation must protect certain data structures or parts of the code with
mutexes or critical sections. Developing a thread-safe MPI implementation is
a fairly complex task, and the implementers must make several design choices,
both for correctness and for performance [10]. To simplify the task, implemen-
tations often focus on correctness first and performance later (if at all). As a
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result, even though an MPI implementation may support multithreading, its
performance may be far from optimized.

To determine how current implementations perform, we ran tests that mea-
sure the bandwidth and latency obtained when multiple threads of a process
communicate with multiple threads of another process compared with multiple
processes instead of threads (see Figure 3). We ran the tests on the Sun Fire and
IBM p655+ SMPs and on a Linux cluster at Argonne National Laboratory. The
cluster has nodes with two dual-core AMD Opterons and Gigabit Ethernet as
the interconnect. We used the native vendor MPI implementations on the Sun
and IBM machines and two implementations on the Linux cluster: MPICH2 and
Open MPI.

The first test measures the cumulative bandwidth obtained and demonstrates
how much thread locks affect the cumulative bandwidth; ideally, the multipro-
cess and multithreaded cases should perform similarly. Figure 4 shows the re-
sults. On the Linux cluster, the tests were run on two nodes, with all commu-
nication happening across nodes. We ran two cases: one where there were as
many processes/threads as the number of processors on a node (four) and one
where there were eight processes/threads running on four processors. Both cases
show no measurable difference in bandwidth between threads and processes with
MPICH2. With Open MPI, there is a decline in bandwidth with threads in the
oversubscribed case. On the Sun and IBM SMPs, on the other hand, there is
a substantial decline (more than 50% in some cases) in the bandwidth when
threads were used instead of processes.

We also ran a version of the test that measures the time (latency) for individ-
ual short messages instead of concurrent bandwidth for large messages. Figure 5
shows the results. On the Linux cluster with MPICH2, there is a 20 μs overhead
in latency when using concurrent threads instead of processes. With Open MPI,
the overhead is about 30 μs. With Sun and IBM MPI, the latency with threads
is about 10 times the latency with processes.

The overhead of threads is much more noticeable on the shared-memory ma-
chines because the overall message-passing performance on those machines is
high (very low latency and very high bandwidth). Minimizing the overhead of
thread-related locking in such environments is a difficult problem, and more
research is needed in this area.

Additional results for several other tests can be found in [23].
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Fig. 4. Concurrent bandwidth test on Linux cluster (left) and Sun and IBM SMPs
(right)
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5 Summary

Although the MPI standard has existed for a long time and MPI implementa-
tions have matured over the years, many areas remain in which MPI implemen-
tations still need improvement. Some of these improvements are necessitated
by new developments in parallel systems, such as very large scale (more than
100,000 processors) and the advent of multicore chips. Others are just hard topics
that need more work. Special efforts are needed in the areas of scalability, fault
tolerance, one-sided communication, support for multithreading, and topology
awareness. Continued research in these areas and incorporation of research re-
sults into production implementations will enable users to take full advantage of
the enormous power of the leading supercomputers, which is rapidly approaching
1 petaflop/s.
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Abstract. Although they have been the main server technology for many years, 
multiprocessors are undergoing a renaissance due to multi-core chips and the 
attractive scalability properties of combining a number of such multi-core chips 
into a system. The widespread use of multiprocessor systems will make 
performance losses due to consistency models and synchronization styles of 
popular programming models even more evident than they already are. Known 
architectural approaches to combat these losses are generally too complex, too 
specialized, or not transparent to software. In this article, we introduce implicit 
transactional memory as a generalized architectural concept to remove 
unnecessary performance losses caused by consistency models and 
synchronization styles. We show how the concept of implicit transactions can 
be implemented with low complexity by leveraging the multi-checkpoint 
mechanism of the Kilo-Instruction Processor. By relying on a general 
speculation substrate, this method supports even the strictest consistency model 
– sequential consistency – potentially as effectively as weaker models and it 
allows multiple threads to speculatively execute critical sections, beyond 
barriers and event synchronizations. 

1   Introduction 

Over the last decades, multiprocessors have played a key role in servers for a wide 
range of computational problems ranging from scientific/engineering tasks to 
information processing tasks, for example in database and web servers. Their 
importance will likely increase further as the available transistors on a chip will soon 
allow a midrange server of the 90s to fit on a single chip. Building large-scale 
multiprocessors will be a matter of connecting a limited number of such chips, for 
example in a non-uniform-memory-access (NUMA) configuration.  

One reason for the success of shared-memory multiprocessors, as opposed to other 
parallel architecture styles, is their intuitive programming style (and relatively low 
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parallelization effort). For example, parallel threads can be managed via a work queue, 
with inter-thread communication taking place through shared data structures. While this 
approach greatly reduces the effort required to achieve good load balance, the challenge 
for the programmer is to assure that data dependences among threads are respected. This 
is achieved by using synchronization primitives, e.g., locks and barriers. Regardless of 
the primitives chosen, synchronization typically leads to two orthogonal sources of 
performance loss: memory access ordering and serialization losses. 

Regarding memory access ordering, event synchronization in many legacy codes 
may use regular loads and stores that cannot be distinguished from other non-
synchronizing loads and stores. This approach will work correctly as long as the 
underlying machine supports a strict consistency model such as sequential 
consistency. Unfortunately, supporting a strict consistency model has performance 
and/or complexity implications because the architecture has to guarantee that 
individual loads and stores are performed in the order specified by the program of 
each thread to establish a consistent global execution order. While naïve 
implementations may stall the processor until each load or store completes, research 
[10][23] has shown that it is possible to allow a thread to have multiple outstanding 
memory accesses as long as reordering violations can be detected and their effects can 
be “undone”. Conventional speculation support in wide-issue processors can be 
extended to accomplish this, but this approach will suffer from scalability problems. 
Specifically, the length of speculation must be extended to cover the entire memory 
access latency, approaching hundreds of processor cycles, so it would be necessary to 
support a thousand or more instructions simultaneously in flight.  

It is well-known that memory access ordering losses can be reduced or eliminated 
by relaxed memory consistency models. Indeed, if synchronization primitives can be 
identified by the programmer or compiler and if this information can be passed to the 
hardware via special synchronization operations, one can allow reordering of non-
synchronizing memory accesses without any speculation support. Apart from not 
being compatible with some legacy codes, such relaxed consistency models cannot 
eliminate the second source of performance loss: serialization loss. Serialization loss 
occurs when threads stall at a synchronization point, waiting for other threads to 
arrive. For example, a thread cannot enter a critical section until another thread 
releases the lock, or, a thread cannot execute beyond a barrier until all other threads 
have reached the barrier. This serialization loss can sometimes be avoided if the 
programmer spends more effort exploiting the inherent concurrency in the program. 
An alternative approach that removes the burden from the programmer is to let 
threads speculatively execute past synchronization points [13][19][22][24]. For 
example, it is semantically correct to allow multiple threads to execute a critical 
section as long as there are no data races, i.e., accesses from multiple threads to the 
same variable with at least one access being a store. Apart from relying on special-
purpose speculation mechanisms, these proposals assume that critical section 
boundaries can be identified at the hardware level, giving the approach limited appeal. 

In order to avoid memory access ordering and serialization losses, there is a need 
for a general speculation mechanism that has attractive scalability properties. Further, 
in order to be applicable to a broad software base, it should not require that 
synchronization primitives be explicitly identified by the programmer or compiler. In 
this article, we propose implicit transactions, i.e. sequences of memory operations 
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executed in hardware as atomic units, without any software support and transparent to 
the programmer. Within an implicit transaction, a processor’s memory operations can 
be performed in any order (subject to sequential program semantics). Each transaction 
begins with a checkpoint, i.e. a point to which architected state can be rolled back, if 
necessary. Then a thread executes speculatively beyond a checkpoint until it 
successfully arrives at the next checkpoint, which ends the implicit transaction. Then, 
the thread commits all its changes to the memory state by making its stores visible to 
the other threads (e.g. via a snoopy bus). At that time, if another thread detects a data 
race with the committing thread, then the current transaction of the conflicting (non-
committing) thread will fail. At that point, the conflicting thread must roll back to its 
previous checkpoint and begin re-execution. 

While other recent transactional memory proposals also rely on a speculation 
mechanism, they are either specialized for certain software idioms or otherwise rely 
on software to mark the start and end of a transaction explicitly [12][19][24], or they 
are restricted to a specific programming task, e.g. critical sections [22]. Many of them 
rely on a checkpointing mechanism to recover the state of the machine in case of a 
data race. Some superscalar architectures have based their operation in a 
checkpointing mechanism rather than a tracking ROB, such as CFP [25], or Kilo-
Instruction Processors [3]. We will show that implicit transactions can be naturally 
integrated into superscalar processors by leveraging the multi-checkpoint mechanism 
of these innovative architectures. As it was shown in previous work [7], the 
complexity with which Kilo-Instruction Processors can manage thousands of in-flight 
instructions is remarkably low and is sufficient to hide long memory access latencies 
in multiprocessors. Thus, we will focus on the mechanisms that have been proposed 
for Kilo-Instruction Processors, though our schema will be equally applicable to other 
architectures such as CFP, which also makes use of multiple checkpoints on flight. 
There have been different proposals focused on multiprocessor aspects for 
checkpointed processors [16], but not on these precise architectures. 

The remainder of the article proceeds as follows. In Section 2, we present the basic 
mechanisms in Kilo-Instruction Processors that support implicit transactions. Then, 
Section 3 explains how checkpointing is used in our design to create implicit 
transactions. Section 4 shows the implications of the selected design for cache 
coherence and memory consistency. Finally, in Section 5, we describe the application 
of speculation mechanisms for executing beyond a locked critical section or a closed 
barrier. 

2   Kilo-Instruction Processors 

The implicit transactional memory concept leverages some of the key mechanisms in 
the Kilo-Instruction Processor, especially its multi-checkpoint mechanism. Therefore, 
we first provide a summary of the Kilo-Instruction Processor. 

Kilo-Instruction Processors [3] have a demonstrated ability to hide large latencies, 
specifically due to memory accesses, because the processor allows thousands of 
instructions to be in-flight simultaneously. In order to increase the number of in-flight 
instructions, however, the designer must increase the capacities of several resources, 
the most important ones being the re-order buffer (ROB), the instruction issue queues, 
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the load/store queues and the physical registers. Unfortunately, simply up-sizing these 
structures is not feasible with current or near-term technology. 

In order to overcome the difficulties of up-sizing critical structures, Kilo-
instruction processors employ a number of techniques to arrive at a complexity-
effective implementation. Such an approach is possible because critical resources are 
underutilized in present out-of-order processors [2],[15]. The main technique consists 
of multi-checkpointing long latency instructions instead of using a very large ROB. 
This way, instructions can release resources in an out-of-order fashion [4], thereby 
requiring fewer resources than in a ROB-based implementation. The second technique 
is the Slow Line Instruction Queue that employs a secondary instruction queue to 
which long-latency instructions can be off-loaded. This mechanism allows the regular 
instruction queue to remain small and fast. The third technique is called Ephemeral 
Registers [20], which is an aggressive register recycling mechanism that combines 
delayed register allocation and early register recycling and, in conjunction with multi-
checkpointing and Virtual Tags, allows the processor to non-conservatively de-
allocate resources. 

During program execution, a checkpoint is taken at certain instructions, generally 
at branches that depend on a load miss or load instructions that are likely to miss in 
the L2 cache. The checkpoint is a snapshot of the processor state. If an exception or 
branch misprediction occurs, the state is rolled back to the closest checkpoint prior to 
the excepting instruction. Using a relatively small set of checkpoints for long flight-
time instructions assures safe points of return and reduces ROB requirements 
considerably. Although effective, this may lead to a longer recovery time than with a 
conventional ROB. Therefore, to minimize the exception and misprediction penalty a 
reduced structure called a pseudo-ROB can be used. The pseudo-ROB only maintains 
the youngest in-flight instructions and allows quick misprediction recovery for these 
instructions in a manner similar to a conventional ROB. Because exceptions and 
branch mispredictions occur most frequently within these youngest instructions, the 
average recovery time is effectively reduced.  

Given that multiple checkpoints are taken during program execution, the 
mechanism works as follows. As the instructions in the pipeline advance, in-flight 
instructions corresponding to the different checkpoints are executed. When these 
speculatively executed instructions finish, memory operations remain in the processor 
queues; otherwise they are completed by the processor, leaving results in their 
destination registers. When all the instructions corresponding to the oldest checkpoint 
are finished, the processor commits the checkpoint atomically, by removing memory 
operations from the load and store queues and committing all the results speculatively 
calculated. With this action, the results of speculative instructions may be observed by 
other processors and become globally performed. 

3   Implicit Transactions 

Given the multi-checkpoint mechanisms in the Kilo-Instruction Processors, we will 
now see how they naturally support implicit memory transactions. To simplify the 
discussion, we assume a multiprocessor system with Kilo-Instruction Processor nodes 
interconnected by a bus using a snoopy cache protocol. Other interconnection 
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architectures will be briefly discussed later. Specifically, implicit transactions cause 
the instructions between two checkpoints to appear to the rest of the system as a 
single memory transaction. In particular, memory updates (the store instructions) 
associated with a transaction are managed as a group and are globally and atomically 
performed when the corresponding checkpoint commits. 

We call these implicit transactions because they are automatically and transparently 
hardware delimited, by means of the checkpoint mechanism; a key point is that every 
instruction belongs to some implicit transaction. The programmer does not need to 
know that the system provides transactional behavior. Therefore, both the 
programming model and the instruction set are unaffected, and legacy binaries can be 
directly executed. Note that this idea differs from the concept of transaction that known 
transactional memory systems rely on [12][13][19][24], where transactions are 
considered as programming constructs that normally depend on instruction set support. 
At the same time, implicit transactions can support TCC-based programming models 
[12] where all the code is executed using transactions, by detecting a few special 
transaction boundary-marking instructions. This property allows the execution of 
traditional, as well as TCC-based programming models, using the same underlying 
hardware. 

Now that the close relationship between a checkpoint and an implicit transaction in 
our system has been established, we will henceforth use the term checkpoint and the 
term implicit transaction (or just transaction) interchangeably. In the following we 
first describe a straightforward embodiment that implements implicit transactions and 
then discuss possible performance/complexity optimizations.  

3.1   Basic Scheme 

As in the multiple checkpoint mechanism for a single Kilo-Instruction Processor, all 
the in-flight instructions remain speculative until their corresponding checkpoint 
commits. This means that memory instructions remain in the processor queues and do 
not modify the local cache or the global memory, and they may be correctly rolled 
back. In a snoopy bus based system, after a checkpoint commits, all the stores are 
broadcast over the bus as a packet, thereby validating all the speculative memory 
updates in the checkpoint. The broadcast packet is snooped by remote processors, and 
if an address-match is found the remote processor rolls back to the checkpoint 
previous to its data use because it may have used a stale value.  

Fig. 1 shows an example of the execution flow for four processors, P1 to P4, and 
their respective checkpoints. The processors execute different portions of code, taking 
different checkpoints as the execution advances. The oldest checkpoint for a given 
processor can commit when all of its corresponding instructions, i.e. the ones that 
come after the checkpoint and before the next checkpoint, are finished. In Fig 1, for 
example, P3 can commit checkpoint Chk31, when all the instructions up to Chk32 
have been completed. Then, part of the commit process is an atomic bus broadcast of 
all stores, and in particular the cache tags that the processor has modified during the 
checkpoint execution; these are, the pending memory updates. “Atomic” simply 
means that after the processor gets access to the bus it does not release it until all the 
tags have been broadcast. 
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Fig. 1. Execution flow for 4 processors 
 

Remote processors snoop the memory updates searching for a conflict with load 
instructions in their load queues; by definition these are speculatively executed 
because they are not yet committed. In case of an address match, the remote processor 
is forced to roll back to the appropriate checkpoint because it has used data from a 
shared location that, logically speaking, has been over-written by a “previous” store 
instruction. Conversely, if no such address matches are found, the remote processor 
continues execution, uninterrupted. In the example from Fig.1, the broadcast of a 
store to a given memory location “a” conflicts with two other processors that have 
already speculatively loaded from location “a”, and the loads have not yet committed. 
In this example, P2 is rolled back to Chk23, causing instructions from Chk24 to 
Chk23 to be discarded. Also P4 rolls back to Chk42, forcing its newest instructions to 
be discarded. 

With such a checkpoint-based system, forward progress of the parallel application 
is always guaranteed because roll-backs, other than normal exceptions or branch 
mispredictions, occur only when one processor is committing a checkpoint and 
another one has a conflict. Therefore, at least one processor, the one committing, must 
make forward progress. The system is not concerned with conflicts that can exist 
during the execution of a transaction because they are not globally visible until the 
transaction commits.  

This completes the explanation of how our design provides a correctness substrate, 
although it may be non-optimal from a performance point of view. The design is 
comprised of speculative execution, atomic validation, and the roll-back mechanism, 
which collectively ensure that the code is executed correctly. 

3.2   Performance/Complexity Optimizations 

The length of a transaction has a significant effect on the performance/complexity 
tradeoff. On the one hand, longer transactions allow a higher degree of memory 
operations re-ordering (as we will show in section 5), but on the other hand longer 
transactions may cause more roll-backs due to data races. We have used Simics [18] 
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to obtain some initial statistics of the projected performance of our proposal, in terms 
of the proportion of rollbacks against the overall number of committed transactions. 
Fig. 2 shows an estimation of the proportion of rollbacks in different SPLASH-2 
applications. 

The results in Fig. 2 are not surprising: the proportion of rollbacks increases with 
the number of dynamic instructions that are associated with each checkpoint. It also 
increases with the number of processors that execute the same application, as each 
memory update can force more sharers to rollback. However, it is clear that for the 
checkpoint sizes that have been previously used, often under 512 dynamic 
instructions, the overhead that the protocol imposes will be negligible. With this 
figures in mind, we propose that transaction length should be adaptively adjusted in 
order to give good performance and avoid frequent roll-back scenarios. One could 
start from a fixed transaction length and adaptively shorten or lengthen it as 
more/fewer data races are observed. In case of frequent consistency violations, the 
length of the transactions decreases, also decreasing the probability of violations 
recurring. We are currently investigating heuristics to strike a good compromise 
between performance and resources needed. Note that having a mechanism to 
adaptively adjust the transaction length will also promote fairness among threads. 
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Fig. 2. Rollback proportion for different number of processors and transaction size 
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Another limiting parameter is the capacity of the cache, which has to store the 
speculative state of the transition read-set and write-set, similarly to [1]. Fig. 3 
shows the capacity needed for the write set of two different checkpoint sizes on a 
simulation of Barnes on 32 processors: 128 and 256 dynamic instructions per 
checkpoint.  

We can observe that in the first case merely 9 64-byte cache lines are enough to 
hold the entire write set of the transaction on the 99.8% of the times. With 256 
instructions per checkpoint, just 10 cache lines are needed to maintain the write set on 
the 99.4%. A lack of resources on the first level cache would make the processor stall, 
waiting for previous checkpoints to commit and free their resources. However, the 
previous graphs suggest that, with current cache sizes, on most cases storage won’t be 
a limit. 

Our proposed baseline implementation of implicit transactions assumes that one 
can handle a very large number of in-flight memory operations. While the Kilo-
Instruction Processor aims at providing this capability, more attention is needed with 
regard to the scalability of load/store queues. While encouraging solutions exist 
([8],[21]), we are currently exploring solutions that better match our implicit 
transaction framework.  

Finally, it is interesting to remark that we always refer to the size of the checkpoint 
in terms of dynamic instructions, not static ones. This is important because, otherwise, 
the system might block if two processors kept waiting for data that the other one had 
written but not committed on current transaction. The use of dynamic instructions 
makes both processors eventually take a new checkpoint while spinning and commit 
the previous one, guaranteeing forward progress. 

4   Implicit Transactional Cache Coherence and Memory 
Consistency 

This section demonstrates how cache coherence is maintained and that strong memory 
consistency models can be supported at high performance under the implicit 
transactional model. 
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Fig. 3. Set size for the Barnes application with 32 processors 
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4.1   Cache Coherence 

A baseline snoopy cache coherence protocol works as follows. During the execution 
of a transaction, the local cache is not modified by local stores, only speculative loads 
are performed including loads that miss in the caches. Once a transaction commits, 
the pending stores are atomically performed by broadcasting the changes to the rest of 
processors, updating or invalidating the remote cache lines. When the stores from a 
transaction need to be broadcast, the corresponding processor will be granted access 
to write on the bus and release it only when all its memory updates are globally 
performed. This operation prevents other processor from broadcasting memory 
updates simultaneously and guarantees that a transaction is globally performed in an 
atomic fashion. Finally, if there is an update or invalidation of a remote cache line, all 
remote cache lines matching the snooped address will be updated or invalidated and 
the associated processors will roll back to the previous checkpoint. Note, however, 
that while transactions have to be committed one by one, individual nodes can still 
gain access to the bus to service cache misses. While a processor is validating the 
different stores of a transaction, other processors can interleave read requests without 
affecting correctness, as no update is performed on a read. 

With implicit transactions, cache coherence protocols can be greatly simplified. 
For example, the basic protocol does not need to maintain cache lines in “shared” or 
“exclusive” state, as dictated by MESI-like cache coherence protocols. While this 
inevitably can result in higher traffic, simulation results in [12], assuming a similar 
transactional framework supported in software, show that the traffic is manageable. 
Further, there is room for improvement using a write cache [5] to coalesce multiple 
modifications of individual words in a cache line and using silent store elimination to 
be discussed later.  

 Since the basic protocol exploits the atomicity that a bus provides, generalizing it 
to a non-broadcast environment appears problematic. However, we are exploring 
extensions to scalable protocols. For example, a directory protocol should be extended 
with an arbitration mechanism. Arbitration would decide which processor can send its 
atomic update or invalidate packet to the rest of processors, avoiding the interleaving 
problem. Arbitration could be implemented, for instance, using a token-based 
mechanism. Briefly, the simplification of a normal coherence protocol under this 
approach would be the same as for a bus: no coherence state is potentially needed for 
each memory address. However, it would be good for performance to maintain the list 
of sharers on each directory entry in order to reduce the number of messages. 

4.2   Memory Consistency 

The memory consistency model employed in a shared-memory multiprocessor 
establishes the rules that must be followed when the system overlaps or reorders 
memory operations performed by the processors. The different consistency models 
offer a trade-off between programming simplicity and performance. At one end of the 
spectrum is Sequential Consistency (SC) which is generally considered to be the most 
natural and desirable programming model [14], but it is also the most restrictive. It 
guarantees that interleaved memory operations from different processors appear to 
execute in program order. A basic implementation of SC normally requires a 
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processor to delay each memory access until the previous one is completed, while 
simple this approach clearly leads a low performance. More relaxed models, such as 
Release Consistency (RC) [9] provide higher performance, at the cost of not ensuring 
strict ordering of memory operations in hardware; this places more burden on the 
programmer to assure correct shared memory accesses. Other consistency models, 
lying between SC and RC, provide intermediate performance and ordering  
restrictions, such as Processor Consistency [11]. 

One of the most important properties of implicit transactional memory is that 
sequential consistency is simply enforced, potentially without performance loss due to 
memory ordering constraints and in a manner that is transparent to the software. The 
key observation is that a globally consistent transaction execution order is established, 
where transactions from a single thread respect the program order of that thread. 

In Fig. 4 we give an example of a sequentially consistent global order of memory 
operations from two different processors; the operations are labeled {A1, A2, A3} for 
processor A, and {B1, B2, B3} for processor B. The third column shows a global 
order that respects the program orders from both processors. 

Our proposed implementation groups memory accesses from each processor into 
implicit transactions by taking checkpoints. Thus, we can extend the definition of 
sequential consistency to such transactions, and require only transactions from each 
processor to be in order. The resulting global order will be an interleaved sequence of 
transactions that meets the basic definition of SC because it corresponds to one of the 
possible sequentially consistent global orders. Fig. 5 provides an example where we 
group instructions into transactions, labeled {TR_A1, TR_A2} for processor A, and 
{TR_B1, TR_B2} for processor B. The third column shows that respecting program 
order for these transactions will also respect program order for memory operations. 

It is important to note that memory operations can be executed out-of-order, and 
therefore in Fig. 5 it would be possible for instructions in transaction “TR_A1” to be 
reordered, for example, as “A2, A3 and A1” instead of the order “A1, A2 and A3” as  
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shown. This avoids memory ordering performance losses without violating sequential 
consistency, as the speculative character of these operations ensures their validity, and 
they are committed atomically in a block. Because the Kilo-Instruction Processor can 
support hundreds of in-flight memory instructions with a constant checkpoint 
recovery time, this approach is expected to be significantly more scalable than the 
proposed SC++ implementation [10] that relies on a tracking buffer with a variable 
recovery time whose size increases with the number of instructions tracked. 

5   Synchronizations and Implicit Transactions 

We now turn our attention to ways that implicit transactions can avoid costly 
serialization losses by allowing multiple threads to speculatively execute beyond 
synchronization points. We first show a basic scheme that focuses on correct 
concurrent execution of critical sections and then discuss opportunities for 
optimizations of the basic scheme. 

5.1   Basic Scheme 

Fig. 6 shows an example in which a processor executes a lock-protected critical 
section under three checkpointing scenarios A, B, and C. When a processor reaches 
the lock, it checks the value of the lock and acquires it if it is free; otherwise it spins 
on the lock variable. If the lock is free, the store to the lock variable, i.e. the acquiring 
operation, remains in a speculative state in the processor queues until the store can 
commit. Meanwhile, a new checkpoint can be taken inside the critical section  
(Fig. 6a). Committing the transaction that finishes inside the critical section will 
validate the lock store instruction, thereby globally acquiring the lock, and forcing 
remote processors inside the critical section to roll back due to the invalidation of the 
lock variable. After that, remote processors will be inhibited from entering the critical 
section, due to the acquired lock. The validation of transaction T1 will force any other 
thread executing inside the critical section to roll back, as the lock variable is in the 
remote processor read set. When the processor validates transaction T2, the critical 
section gets unlocked and remote processors can start executing it. 

The same invalidation happens if no checkpoint is taken until the critical section is 
unlocked (Figures 6b and 6c). In this case, the lock variable is also written. Thus, the 
validation of a transaction that has entirely executed a critical section will cause any 
other processor that is speculatively executing it to roll back, which means that only a 
single valid processor stays inside a critical section. This should be the most frequent 
case, due to the short nature of critical sections. 

Finally, it is obvious that the system behaves correctly in the presence of flags and 
barriers. In effect, processors that reach a closed flag keep spinning on it, ensuring 
that no code is executed past the flag. These examples show that the correctness 
substrate ensures correct execution in presence of critical sections and barriers, 
independently of where checkpoints are taken. 

5.2   Performance Optimizations 

Roll-backs will sometimes happen even if lock variable accesses are the only sources 
of data races. In theory, this leads to an unnecessary performance loss. When one  
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Fig. 6. Different checkpointing scenarios 

 

processor has acquired a lock, the release the lock variable will write the same value 
to the lock variable that is already in this memory position (a temporally silent store 
[17]). We propose the use of two optional mechanisms that allow the system to detect 
these cases and naturally speculate through critical sections, thereby improving 
performance and reducing network traffic. 
 
Store merging and silent store removal. The first mechanism detects and removes 
silent stores by detecting that a store does not globally modify memory, and removes 
that update from the update packet. An ordinary store merging mechanism (similar to 
that implemented in the Alpha 21164 [6]) reduces the number of stores to the same 
address within a transaction to only one, and silent store removal avoids broadcasting 
the remaining stores. Store merging therefore removes a store when a younger store is 
to the same address. If we apply this mechanism when all the instructions of the 
checkpoint are finished, we need not bother with race conditions such as load 
instructions between two merged stores. In such a case, the load instruction would 
have received the correct value via store forwarding mechanisms internal to the 
processor. The next step is to remove silent stores by leveraging the store-forwarding 
logic used in current processors. Store-forwarding searches the older stores before 
executing a load, and if an address match is found, the value of the store is forwarded 
to the load. In contrast, our mechanism searches older loads before executing a store, 
and if an address and value match is found the store is removed because it is silent. 
The mechanism is simple because it is only necessary to look for silent stores within a 
single transaction, with all the loads queued waiting to be committed and the stores 
queued waiting to be broadcast to the memory hierarchy. This mechanism, when 
applied to the checkpoint scenario B in Fig. 6, would remove the lock variable from 
the update packets and allow different instances of the same critical section to run in 
parallel avoiding processor serialization stalls, in the absence of other data races. For 
typically small critical sections, scenario B is likely to be the common case.  
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Lock detection mechanism. If locks are detected at run-time, we can ensure that no 
checkpoint is taken within a critical section, to enforce scenario B in Fig. 6. We make 
use of a lock detection mechanism, which dynamically detects typical Test&Set lock 
constructs. To maximize concurrency, the lock detection hardware forces a new 
checkpoint to be taken just before the lock, so that the lock remains open for the rest 
of the processors at the beginning of the new transaction. In addition, the hardware 
could detect the lock release, which is a simple store to the lock variable, and take a 
new checkpoint just after it. This makes the transaction length equal to the critical 
section, and avoids unnecessary roll-backs due to data races on data outside the 
critical section as in scenario C in Fig. 6.  

Finally, we note that the proposed method preserves correctness independently of 
the length of the critical section. In contrast, TCC [12], which is a similar transaction 
approach, locally buffers all the memory updates corresponding to a certain 
transaction. In case of a buffer overflow, the processor in TCC must acquire the bus 
and not release it until the end of the transaction, thus blocking the rest of the system. 
In case of such an overflow, the system takes a new checkpoint and waits for the 
resources to free from previous checkpoints before continuing execution. Thus, in 
such a case, the behavior would be similar to scenario A in Fig. 6, which is correct but 
does not enable parallel execution. 

5.3   Speculating Beyond Flags and Barriers 

The proposed design can be adapted to speculate after barriers, in a similar fashion as 
[19]. Here, too, there is a need to detect the barrier code and take a new checkpoint 
just prior to it. Speculative execution starts after the barrier. All the transactions after 
the barrier remain fully speculative, meaning that none of them can be validated, as 
long as the barrier remains closed. This is ensured by setting a “pure speculative 
mode” in the processor. 

To determine the time at which the barrier opens, the processor tracks the cache 
line containing the barrier variable, waiting for a cache event (an invalidation or an 
update of the line) before checking the value again. When the barrier opens, the “pure 
speculative mode” is disabled, and the processor can start committing all the 
transactions in the pipeline. Note that a remote invalidation of the speculatively 
marked line does not force a roll-back, but makes the processor re-check the variable. 
Of course, all the speculative execution done before opening the barrier variable has 
no effect on the consistency model because the commit only happens after the real 
barrier opens up, and the correctness substrate ensures that the cache contents remain 
valid up to the commit instant. 

The expected performance improvement of this scheme depends on the average 
time the processors wait at a barrier, while in the previous case the processor can 
commit the critical section and continue execution. Thus, if the waiting time does not 
exceed the time needed for the pipeline to fill up and stall, performance will improve. 
As Kilo-instruction Processors are designed to support thousands of in-flight 
instructions, this good-case scenario will occur frequently. Furthermore, in case of a 
data race forcing a roll-back, this mechanism will prefetch the needed data, possibly 
reducing memory latencies encountered later on. 
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6   Concluding Remarks 

This paper introduces a framework that makes Kilo-instruction Processors capable of 
executing parallel code in a transactional fashion, similar to the TCC model, but 
assumes no modification of the code nor the programming model. Our model 
maintains Sequential Consistency with a low hardware cost, a high performance 
potential, and a reduced bus overhead. The hardware requirements are low, as most of 
the mechanisms are already proposed for Kilo-Instruction Processors, and the 
processor model is simplified thanks to the transactional behavior. 

Our model also enables speculative execution in critical sections and beyond 
barriers, reducing performance losses that these constructs cause in parallel programs. 
This, together with the advantages of transactional behavior, will provide high 
performance with no required code modifications. 
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Architecture Using Asynchronous Function Units
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Abstract. Efficiency and flexibility are crucial features of processors in the em-
bedded systems. The embedded processors need to be efficient in order to achieve
real-time requirements with low power consumption for specific algorithms. And
the flexibility allows design modifications in order to respond to different appli-
cations. As the superset of traditional very long instruction word (VLIW) archi-
tecture, Transport Triggered Architecture (TTA) offers a cost-effective trade-off
between the size and performance of ASICs and the programmability of general-
purpose processors. The main advantages of TTA are its simplicity and flexibility.
In TTA processors, the special function units can be utilized to increase perfor-
mance or reduce power dissipation. In this paper, we design a low-power proces-
sor architecture using asynchronous function units based on TTA. The processor
core is globally synchronous and locally asynchronous implementation using not
only synchronous function units but also asynchronous function units. We solve
the problem that use asynchronous circuits in TTA that is only synchronous de-
sign environment. The test result shows that this processor has lower power dis-
sipation and higher performance than its pure synchronous version that only uses
synchronous function units.

1 Introduction

In recent years, special-purpose embedded systems have become one very important
area of the processor market. Digital signal processor (DSP) offer flexibility and low
development costs, but it has limited performance and typically high power dissipation.
Field programmable gate arrays (FPGA) combine the flexibility and speed of appli-
cation specific integrated circuit (ASIC), but it cannot compete with the energy effi-
ciency of ASIC implementations. Application Specific Instruction Processor (ASIP) is
designed to perform certain specific tasks as efficiently as possible to solve this prob-
lem [1]. But during the ASIP design process, there are some difficulties such as the
instruction set and the architecture, development of software retargetable compilation
and so on.

To solve these problems, This paper studies an embedded low-power processor archi-
tecture based on Transport Triggered Architecture according to the ASIP design flow.
For the specific application, TTA can provide both flexibility and configurability during
the ASIP design process. In order to exploit operation parallelism as much as possi-
ble and reduce the dynamic power consumption of the processor, custom asynchronous
function units are studied.
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© Springer-Verlag Berlin Heidelberg 2007
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Since the early days, asynchronous circuits have been used in many interesting ap-
plications. There were many successful examples of asynchronous processors, which
were described in [2], [3], [4], [5], [6], [7] and [8] et al. The results show that asyn-
chronous circuits have advantages of low power consumption and high performance. In
the embedded systems that are sensitive to power dissipation, there is a problem for us
to solve that how to make our processors have lower power consumption without per-
formance loss. There were many ways but no one used asynchronous circuits in TTA.
In this paper, we attempt to use asynchronous function units in TTA in order to imple-
ment a low-power embedded processor architecture taking advantage of asynchronous
circuits and TTA. This novel processor architecture may be viewed as globally syn-
chronous locally asynchronous implementation. The evaluation results show that it has
higher performance and lower power dissipation than TTA that only uses synchronous
circuits.

The rest of this paper is organized as follows. Section 2 briefly describes the Trans-
port Triggered Architecture. Section 3 describes the implementation of custom asyn-
chronous function units. The target architecture is designed in Section 4. Next, two
processor core are simulated, performance and power dissipation results are presented.
The last section gives the conclusion and the future work.

2 Transport Triggered Architecture

Transport Triggered Architecture that proposed by Henk Corporaal et al can be viewed
as a superset of traditional VLIW architecture [9]. A TTA processor consists of a set
of function units and register files are connected to an interconnection network, which
connects the input and output ports. As compared to conventional processor architec-
tures, in the TTA programming model, the program specifies only the data transports
(MOVE) to be performed and the interconnection network is visible to the software
level when developing TTA applications. Each function unit of TTA may have one and
more operand registers (O) and result registers (R), but only one trigger register (T). For
example, we show how a three address registers ADD instruction translates into MOVE
operations:

ADD R3, R2, R1 =>
R1 -> O; R2 -> T; R -> R3.

First, the values in R1 and R2 have been transported to the operand register and
trigger register of the adder respectively. When the value of R2 is transported to the
trigger register, the. function units will begin to work. After some time (depending on
the latency of the function unit) the result in result register will be moved to R3. In
addition, one TTA instruction always contains several parallel data move operations
after software optimization.

The structure of the TTA processor is very simple, as shown in Fig. 1 (a). The data
path part consists of Register Files (RF), Load Store Units (LSU) and Function Units
(FU), which are connected to an interconnection network. The control path part consists
of Instruction Fetch Unit (IFetch) and Instruction Decode Unit (IDecode). The Instruc-
tion Decode Unit can generate the control signals of the interconnection network and
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Fig. 1. (a) The architecture of TTA processor. (b) The TTA framework.

immediate. According to different applications, the differences of the application spe-
cific TTA processors are the number and type of the function units, register files, buses
and buses connections. This brings the flexibility of the architecture design.

As shown in Fig. 1 (b), the TTA framework contains the software framework and
hardware framework [10]. In TTA framework, the machine description language is
defined. The application specific processor can be described in this language and the
Machine file will be generated. Based on the generic TTA architecture, the frontend
compiler can generate the sequential code. According to the Machine file, the back-
end scheduler can convert the sequential code into efficient parallel code for a given
TTA target processor. The sequential simulator and parallel simulator can simulate the
sequential code and parallel code respectively. These simulators are used to verify the
code and evaluate the performance. In hardware framework, the HDL (hardware de-
scription languages) description of the decoder and interconnect network can be gener-
ated. These HDL description can be provided to other EDA tools.

Because of the flexibility and simplicity of the TTA architecture, the designer can
customize special operation into the instruction set by designing special function unit
to the architecture. Thus, some bottleneck operations in the applications can be imple-
mented by special function unit so as to increase the performance. In the same way, our
asynchronous function units can be utilized easily to reduce power dissipation in the
TTA architecture.

3 Application Analysis and Asynchronous Function Units

In CMOS circuits, power dissipation is proportional to square of the supply voltage [11].
Therefore, a good energy-efficiency can be achieved by aggressively reducing the sup-
ply voltage [12] but unfortunately this results in low circuit performance. Clock gating
technique can be used to reduce the power consumption of non active function units.
Significant saving can be expected on units with low utilization But the clock gating
technique also suffers from performance loss [13].

Asynchronous circuits have characteristics that differ significantly from those of syn-
chronous circuits, such as high operating speed, less emission of electro-magnetic noise
and low power consumption. Asynchronous circuits can be used to reduce the power
consumption of the processor due to fine-grain clock gating and zero standby power
consumption [14].
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Asynchronous circuits only operate when data are ready, and realize the instant
change between idle state and busy state, that is to say, the unused components will
be power-down automatically. This characteristic of asynchronous circuits is propitious
to low-power integrated circuits design.

According to application analysis, the statistics of major operations will be pre-
sented. If we will implement the asynchronous function units to execute the operations
that are frequently used in these applications, the power consumption may be reduced.

3.1 Application Analysis

Because the architecture is determined by the characteristics of the application set, the
first step of the architecture design is to analyze the application. By the analysis of
different digital signal processing applications, paper [15] finally chosen 6 kernel ap-
plications as the representative set, as shown in Table 1.

Table 1. The DSP kernel application set

No. Name Brief Description

1 FFT Fast Fourier Transform
2 FIR Finite Impulse Response filter
3 IDCT Inverse Discrete Cosine Transform
4 MAT-MUL Multiply of two matrix
5 RECIP Get the reciprocal of one integer
6 MAXIDX Get the index of the maximum value of a vector

These kernel applications are frequently used in various embedded applications. The
type and amount of the major operations in the application determines those of the
function units in the TTA processor. The operations are divided into several types:

– add/sub: add operation and sub operation
– mul: multiply operation
– memory: load and store operation
– shift: shift operation
– logic: logic operation, such as and, or compare operation
– misc: some trivial miscellaneous operations

The proportions of the six major operations are shown in Fig. 2.
According to the type of the major operations, designer can quickly decide what

function unit to implement; similarly, the amount of the function units is decided to the
proportion of the equivalent operations. As shown in Fig. 2, we find that add/sub oper-
ation and multiply operation are common in the DSP applications, so the asynchronous
adder and multiplier are implemented in order to reduce the power dissipation.

3.2 Asynchronous Adder

In this work, we implemented a 32-bit asynchronous adder. This asynchronous function
unit employ micropipeline architecture that advocated by Sutherland in his paper [16].
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In asynchronous micropipeline, the global clock is replaced by a local communication
protocol. The communication protocols employed in a micropipeline can be either a
2-phase or 4-phase signaling. The control circuits, called handshake circuits, realize the
communication protocol locally inside a micropipeline between adjacent stages. The
control circuits can be described as STG (signal transition graphs) [17] and synthesized
by Petrify [18].

This asynchronous adder employs four micropipeline stages, and the architecture can
be illustrated in Fig. 3.

This adder is composed of a traditional combinatorial circuit and a control circuit. To
the designer the trade-off is between the performance and area. We employe ripple-carry
adder, which performance is limited but this implementation can satisfy the requirement
and save layout area.

In Fig. 3, each latch controller can generate the local clock, such as Lt1, Lt2, Lt3, Lt4,
to control the latches of each stage. The matching delay elements provides a constant
delay that matches the worst case latency of combinatory logic in each stage. In addition
to the combinatorial circuit itself, the delay element represents a design challenge. In
our procedure, the timing analysis has been done and custom delay cells is implemented
to provide the constant delay.

3.3 Asynchronous Multiplier

In [19], a 32-bit asynchronous multiplier based on radix-2 Booth algorithm has
been presented. The asynchronous multiplier used booth decoding and has the same
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performance to the synchronous version but lower power dissipation. Similar to the
asynchronous adder, the multiplier employs four stages micropipeline architecture and
matching delay elements. The architecture of the asynchronous multiplier is shown in
Fig. 4.

As shown in Fig. 4, the asynchronous multiplier has one operator register (O), one
trigger register (T) and one result register (R). The operator register and trigger register
are both controlled by global clock but the internal data path is controlled by local
clock. When data is transferred to the trigger register, the multiplier will be triggered
to work. The latency of the asynchronous multiplier need to be converted to cycles
of the global clock. For example, if the latency of the asynchronous function units is
equal to 20ns and the global clock period is 5ns, we should define that the latency of
this asynchronous function units is 4 cycles in TTA Machine file. To TTA scheduler, it
will take 4 cycles for this function unit to complete the operation. After 4 cycles, the
scheduler can read the result register and send the result to other units that need it. But,
if the latency of asynchronous unit is 16ns, we also have to define the latency is 4 cycles.
It may brings performance loss, but it is a worthy trade-off between performance and
power consumption to some systems that are sensitive to power dissipation.

Using global clock to control the input registers and trigger signal to start the opera-
tion can solve the problem that how to use asynchronous function units in synchronous
TTA environment. This means we should only modify the interface of asynchronous
function unit in order to use it quickly in TTA framework.

4 Implementation of the Architecture

According to the parallel simulator of the TTA framework, the parallelism upper bound
is determined. It means how many buses should be used. The amount of average ac-
tive registers shows how many registers should exist at the same time both to save the
hardware cost and to keep the performance.

In this work, for example, we select application of MAT-MUL that multiplies of two
matrix for test. Because in MAT-MUL, the add, mul, shift are the major operations,
we can implement the processor core quickly using simple integer function units. Of
course, the TTA processor core can execute the other applications by quickly adding
some function units, such as some floating point function units. Taking into account
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Fig. 5. The architecture of the processor core

that the function unit executing the shift operation is simple, we implement it as a
synchronous cell. So the processor is composed of seven separate function units and one
register files (RF) containing 128 general-purpose registers. The function units include
one asynchronous multiplier (AMUL), two asynchronous adders (AADD), one Boolean
comparison unit (BC), one Load/Store unit (LSU) , one shift unit (SH) and one I/O unit
(I/O). The function units and register files are full connected by interconnection network
consisting of 5 buses and 30 sockets. The 32-bit buses are used to transport data. In
addition, the processor contains control unit (CNTRL), instruction memory and data
memory.

This processor core (HTTA) is a hybrid implementation using both asynchronous
function units and synchronous function units. The general organization of the proposed
processor core is shown in Fig. 5.

The structural description of the processor core was obtained with the aid of the
hardware subsystem of the TTA framework, which generated the Verilog description.
The structures of the Boolean comparison unit, Load/Store unit, shift unit and I/O unit
were described manually in Verilog. Based on the asynchronous circuit design flow that
was presented in [19], the asynchronous multiplier and adder were implemented. These
asynchronous function units should be defined in the TTA framework.

5 Test and Results

In order to compare the power consumption, we implemented synchronous multiplier
and adder that used the same data path as their asynchronous versions. The synchronous
processor core (STTA) replaced the asynchronous function units with their synchronous
versions in Fig. 5. These two processor cores were implemented in 0.18μm CMOS
standard cell ASIC technology. The layout was implemented in standard cell automatic
place and route environment. The Mentor Graphics Calibre was used for the LPE (Lay-
out Parasitic Extraction) and the Synopsys Nanosim was used for the performance and
power analysis. In performance and power analysis, the simulation supply voltage was
1.8V, the temperature was 25°C, and the device parameters used the typical values that
come from the foundry. The clock frequency of these processor cores was 200MHz.

The application MAT-MUL was executed by two processor, the optimization is
purely done by the compiler. It should be noted that only performance and power
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Table 2. Comparison of two processor cores

Design Clock Frequency [MHz] Execution Time [μs] Power [mW] Area [mm2]

STTA 200 192.785 32.9503 0.782768
HTTA 200 170.555 24.7657 0.835012

dissipation of processor cores are compared, and the power dissipation of instruction
and data memory are not taken into account. The obtained results are listed in Table 2.

Table 2 shows the test results of two processor cores. The metric is the execution
time of the applications and power dissipation. Due to characteristics of fine-grain clock
gating and zero standby power consumption, the total power of hybrid processor core is
less than pure synchronous one. When switch to idle state, the asynchronous function
units can save the power but synchronous function units cannot do.

The execution cycles of hybrid processor core is less than pure synchronous one. The
reason is that the performance of asynchronous adder is higher than its synchronous
version. The architecture of asynchronous adder is very simple and the latency of the
combinatory logic in each stage is very low. According to timing analysis, The matched
delays of each stage are 1.79ns, 1.82ns and 1.82ns, which is less than one clock period
(4ns). After doing post-layout timing analysis and trimming of the delays, we define
the matched delays are both 3ns. In non-pipelined mode, the synchronous adder needs
five cycles (20ns) to complete the whole add operation. But the asynchronous adder
can complete the whole operation in 16ns. So we define the latency of the synchronous
adder is 5 cycles and the latency of asynchronous one is only 4 cycles in TTA frame-
work. On the other hand, the latencies of asynchronous multiplier and its synchronous
version are both 7 cycles in TTA framework. So the total performance of HTTA is
higher than STTA.

Because of the area cost of the control circuits and independent power rings layout,
the area of asynchronous function unit is lager than its synchronous version. The area
cost is a disadvantage of the asynchronous circuits implementation without any area
optimization. Designers should seek the trade-off between power consumption, perfor-
mance and area. In different applications, optimization techniques for different targets
should be used [20]. Taking into account of the improvement in performance and power
dissipation, it is worth to pay attention to the design and application of asynchronous
circuits.

6 Conclusions and Future Work

TTA is very suitable for embedded systems for its flexibility and configurability. Sup-
ported by application characteristics analysis and special function units, the architecture
is easy to be modified to adapt to different embedded applications. TTA is configurable,
the special function units can be easily added and used in hardware/software co-design
environment in order to improve the performance or reduce the power consumption. In
this paper, we modified the interface of two asynchronous function units and used them
in embedded TTA processor successfully.



362 Y. Li et al.

Here two asynchronous function units tailored for TTA architecture were used, the
simulation result shows that the hybrid processor core using asynchronous and syn-
chronous function units has higher performance and lower power dissipation than the
processor core using synchronous function units. The results proves that this low-power
embedded processor architecture taking advantage of asynchronous circuits and TTA is
effective. Although there is some area cost, it is worth to pay attention to the design and
application of asynchronous circuits in embedded systems that are sensitive to power
dissipation and performance.

In this work, we found that the utilization ratio of the function units were not very
high. The scheduler in TTA framework is far from perfect and the low utilization will
cause the performance loss. In the future work, the software optimization will be re-
searched further, including compiler optimization and handle scheduling.
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Abstract. Unlike traditional superscalar processors, Simultaneous Mul-
tithreaded processors can explore both instruction level parallelism and
thread level parallelism at the same time. With a same fetch width, SMT
does not fetch instructions from a single thread as deeply as in tradi-
tional superscalar processors. Meanwhile, all the instructions from differ-
ent threads share the same Function Units in SMT. All the characteristics
make it possible to enhance the performance of SMT by reducing the
branch mis-predictions. Based on the fact that about 15% of branch in-
structions directions can be definitely known at predicting cycle, a simple
and effective bypass mechanism is proposed. This scheme doesn’t depend
on any existing branch predictors, and it can be used as an effective en-
hancement to any one of them. Execution-driven simulation results show
that the branch miss prediction rates of our predictor decrease by more
than 15% on average compared to a simple base line (g-share) predictor
and improve the instruction throughput by about 2.5%.

1 Introduction

Simultaneous Multithreaded processors [1, 2] increase the instruction through-
put by allowing fetching and running instructions from several threads simulta-
neously at a single cycle. In SMT processors, functional units that would be idle
due to instruction level parallelism (ILP) limitations of a single thread are dy-
namically filled with useful instructions from other threads. An SMT processor
can hide both long latency operations and data dependencies in one thread effec-
tively. These advantages help increase both processor utilization and instructions
throughput.

With the pipeline deepening and issue widths increasing, the branch predictor
plays an important role in improving the performance of an SMT processor
[3]. At the same time, according to Matt Ramsay et al. [4], high accuracy of
branch predictors are not always needed for a SMT processor because the SMT
processors can hide the penalty effectively. So a simple and effective predictor is
more suitable for SMT processors.
� Supported by National Natural Science Foundation of China (NSFC) No.60573107.

L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 364–375, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Bypass Mechanism to Enhance Branch Predictor for SMT Processors 365

It is well known that a conditional branch instruction uses the result from
previous instructions to make a branch decision. In our experiments, we observe
that most times the distance between instructions that produce results and a
branch instruction that uses the results is not too large. In some programs, there
is a high percentage of conditional branches whose direction decisions can be
definitely known at the predicting cycle, and for these branch instructions the
predictor should not miss-predict, and thus the wrong path instruction fetch-
ing should also be avoided for them. When this feature is considered in SMT
processors, the saved fetch slots can be used to fetch more useful and correct
instructions in the threads, therefore improving the overall performance.

In this paper, we are proposing a simple and effective bypass mechanism that
exploits the above feature by combining a Writing-Register-Table (WRT) and a
base line (g-share) branch predictor together. It is easy to implement, and needs
less hardware than many existing dynamic predictors. Compared with our base
line Execution-driven simulation results show that the branch prediction miss
rates will be further reduced. Although we use a simple branch predictor as our
base line predictor, our scheme doesn’t depend on it, and can be used with any
existing branch predictor.

The paper is organizedas follows. First, we introduce the related work on branch
predictors. Then, we present a study on the characteristics of branch instructions
and their relied registers, and give our proposed bypass mechanism. In the third
part, we give the simulation results and analysis, and finally conclusions.

2 Related Work

Till now, a lot of branch predictors have been proposed. Yeh and Patt [5] show
that a two-level branch predictor can achieve high levels of branch prediction ac-
curacy. And S. McFarling [6] proposed the g-share branch predictor. To solve the
problem of branch interference, Chih-Chieh Lee et al [7], introduced the Bi-modal
Predictor, Eric Sprangle et al. introduced the Agree Predictor [8]. Additionally,
Skewed Branch Predictor [9], the Filter Mechanism [10] and the YAGS predictor
[11] are introduced in traditional superscalar processors. Moreover, value predic-
tors using the concept of value locality to improve branch predictor accuracy [12,
13, 14, 15, 16] are always used as a component of a modern combined predictor.

The past few years, some new methods are introduced such as Lucian N.
Vintan’s pre-computed branches [17] which compute the destination of condi-
tional branches as early as the first operand is ready for superscalar proces-
sors, Robert S. Chappell’s Difficult-path branch prediction that uses subordinate
micro-threads [18], Craig Zilles’s Execution-based prediction that uses specula-
tive slices [19], Lucian Vintan introduced the Neural Branch Prediction [20],
Renju Thomas et al studied dynamic dataflow-based identification of correlated
branches from a large global history [21], Steven Swanson et al. evaluated the
importance of branches in modern deep pipelined processors [22], and David
Tarjan introduced the hashed perceptron predictor, which merges the concepts
behind the g-share, path-based and perceptron branch predictors [23].
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Though these methods are suitable for superscalar processors, they do not
take advantage of SMT processors characteristics. In this paper, we propose a
simple and effective bypass scheme for SMT processors that tries to decrease the
wrong path instruction fetching when a branch can be predicted correctly for
sure. Our scheme outperforms traditional simple predictors and can be used with
any other traditional predictors. Although it is based on previous work [25], there
is a big difference between them. Our scheme does not predict all conditional
branches; instead, those branches whose operands are not being written by in
flight instructions will not go through the branch predictor. In the next section
we will describe this in detail.

3 A Bypass Scheme to Improve Branch Predictor

In this section we present our basic idea, and give the proposed bypass scheme
in detail.

3.1 Basic Idea

Traditionally, high performance processors employ complex predictors and fetch
deeply to find more independent instructions and therefore increasing ILP. How-
ever, in SMT processors, as there are enough instructions that can be fetched
from different threads, it is not necessary for SMT to fetch as deeply as tra-
ditional processors. Besides, SMT processors can hide mis-prediction penalties
effectively, therefore making a simple predictor more suitable for them.

The outcome of a conditional branch requires the datum values from two
previously computed source operands. As soon as these operands are known, then
by using data-value prediction techniques the branch outcome can be speculated.
Previous studies have shown that the greater the distance branch source operand
computation is from the branch instruction then the greater the degree of data-
value prediction. In our simulations, using an SMT processor, we show that
a significant proportion of the computation of source operands (about 15%)
required by conditional branches are far enough from their associated branch
instruction to render data-value prediction appropriate. Processor performance
and thread utilization is, therefore, improved by the resulting earlier pre-fetching
of instructions from the appropriate conditional branch path.

3.2 Architecture of Our Scheme

The architecture of our scheme is shown in Figure 1. It includes three compo-
nents: a Writing Register Table (WRT), a base line predictor, and an update
engine.

The WRT. Using Alpha ISA as an example, and consists of 64 entries that
represent 64 physical registers. Each entry includes two fields: the first one is a
9 bits counter to record the number of in flight instructions that will write the



A Bypass Mechanism to Enhance Branch Predictor for SMT Processors 367

counter(9bits) =0 <=0setclear>0>=0 !=0<0

63

0
.
.
.

Operand 2

.....

result

zero?

result

Operand 1

Fig. 1. The scheme of our predictor

register (here we set the maximum number of in flight instructions to 512), “0”
means there is no instruction in flight will write the register. Whenever there is
an instruction will write register, the corresponding counter is increased by one,
and when the instruction finishes the counter is decreases by one. The second
field is a flag field which indicates the flag of the register, that is branch on equal
to, not equal to, greater than, greater than or equal to, less than, less than or
not equal to zero, and the low bits of the register.

The Base Line Predictor. The base line predictor component can be any
predictor. Here we use a simple g-share/bi-modal predictor as an example. As
an enhancement of branch predictors, our scheme must be used together with
an existing branch predictor. When the fetch engine meets a branch instruction
whose source register is not clean (the dirty bit in WRT is set), it looks up the
base line predictor to get a branch prediction.

The Update Engine. The update engine is a bypass-logic, when one instruc-
tion is executed and its destination is a register, the result of this instruction
will update the flag field and the counter of WRT.

3.3 How It Works?

To enhance branch predictor using our scheme, we need the detailed information
(branch or non-branch instruction, source register numbers if it is branch) of
instructions. Generally, this information can be known at the Decode stage. In
the Alpha ev6 processor, a line predictor is used to help to determine the next
fetch block at the fetch stage, and is updated by a branch predictor at the Decode
stage if they disagree. If a SMT processor has similar architecture as the Alpha
processor, we can get the instruction’s information without any problems. But if
the branch predictor is accessed in the fetch stage, our scheme needs some pre-
decoding information from another structure; here we propose using pre-decoded
Icache to provide the needed information.

With the provided instruction details, when the SMT processor meets a
conditional branch instruction, it will look up the entry corresponding to the
destination-register in the WRT, and check whether the “counter” is “0”. If it
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is “0”, it means that this register has not been updated by the in flight instruc-
tions. In this case, in the next cycle, the Instruction Fetch (IF) stage will fetch
instructions according to the value (target address) stored in the register. Oth-
erwise the destination of the next instruction will be decided by the predictor
(which can be any traditional predictor.) In this paper, we use g-share/bi-modal
predictor as the traditional predictor.

If an instruction in flight needs to write a new value in a register, the “counter”
in the WRT entry corresponding to the register will increase, and when the
instruction is finished in the pipeline then the “counter” decreases.

In super-scalar processors, the fetch depth can be as far as 20 to be able to
find enough instruction to issue, and in such situations, there is no need to use
our scheme because few conditional instructions whose distance from its relied
registers is bigger than 20.

However, in SMT processors, the fetch depth in a particular running thread is
not so deep because of the parallel running mechanism in them, so there is more
chance that conditional branches can get their operands and make a decision
than in superscalar processors. These chances give us enough space to improve
the branch prediction accuracy and thus improve the overall performance. In
the next section, we will give the experimental framework and the simulation
results.

3.4 The Cost of Our Scheme

We assume that every thread has its own such bypass structure. Each structure
needs 64*18bits and the extra bypass logic. In some architecture, the clean bit
has been implemented in many modern superscalar processors. Therefore, the
overall cost of such bypass scheme is quite small.

4 Experiment Framework and Simulation Results

4.1 Experiment Framework

We modify the sim-safe tool of the simplescalar3.0 [24] simulator to calculate
the distance between the branch instructions and the relied instructions. Firstly,
we measure the length of both the double-operand-branch ISA (PISA) and
the single-operand-branch ISA (Alpha). Then, based on the fact that double-
operand-branch ISA and single-operand-branch have similar results, we do our
further experiment on SMTSIM [2] to test our scheme in SMT processor.

The configuration of SMTSIM is given in Table 1. In our experiment, to
compare with our predict scheme we modify the simulator to let every thread has
its own predictor. We implemented our scheme in the simulator, and combined
the g-share predictor and the WRT together.

We select some of SPEC2000 benchmarks (8 integers and 5 floats) to test our
schemes. To get the different data of the same benchmarks, we test the same
benchmark in different threads environment. As an example, we test the data of
“gzip” in 1, 2, 4, 6, 8 threads. Consequently, we know that the different clean rate
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Table 1. Configuration of SMT processor

Parameter V alue

Functional Unites 3 FP, 6 integer (including branch),
4 load/store, 2 synchronization

Pipeline 8 stages
Branch miss penalty 6 cycles
Instruction Queue 32-entry FP, 32 entry Int
Inst./Data Cache 64KB/64KB, 2-way, 64 byte
L2/L3 Cache 512KB/4MB, 2-way, 64 byte
I/D TLB, miss penalty 48/128 entry, 160 cycles
Latency (to CPU) L2 6, L3 18, Mem 80 cycles
Fetch Police ICOUNT.2.8 [2]
Fetch/Rename/Issue/Commit Width 8 instructions/cycle

Table 2. Information of Individual benchmarks

No. Name Num.ofInst. Num.ofBranch

1 Mgrid 281 million 0.05 million
2 Crafty 498 million 42 million
3 Equake 640 million 88 million
4 Gcc 263 million 31 million
5 Gzip 614 million 36 million
6 Mesa 500 million 49 million
7 Art 213 million 29 million
8 Ammp 477 million 11 million
9 Mcf 543 million 78 million
10 Vortex 337 million 38 million
11 Bzip2 477 million 51 million
12 Twolf 445 million 59 million
13 Parser 200 million 36 million

of condition-branch in the same benchmark. From the thirteen benchmarks, we
created eight two-thread, four four-thread, two six-thread and one eight-thread
work-loads randomly. The combination of these benchmarks with their running
instructions are listed in the Table 2 and 3. We use the reference inputs for these
benchmarks and and fast forward 10 billion instructions before starting detailed
simulation.

4.2 Simulation Results

In our experiments, we first measured the distance which is the basic of our
bypass scheme, when the branch instruction has one operand (Alpha), we record
the distance between the instruction produce this operand and the branch that
uses this operand. When the branch instruction has two operands (PISA), we



370 Y. Pan et al.

Table 3. The combinations of different benchmarks

Num.ofThread Combinations

2 1+5, 1+2, 6+9, 8+11
3+4, 3+5, 7+10, 12+13

4 1+2+3+4, 2+8+5+11
6+7+9+10, 9+11+12+13

6 1+2+3+4+5+6, 7+8+9+10+11+12

8 5+6+7+9+10+11+12+13

A: alpha P: PISA

A P A PA P A PA P A P A P A P A PA P A PA P A PA P A P

Fig. 2. The distance of Alpha and PISA

record the distance between the instruction that produces the last operand and
the branch. The results are illustrated in Figure 2. In this figure, the 30 columns
are divided into 15 groups. Each group stand for one benchmark and has two
column: the left one and the right one. The left one means Alpha ISA, and the
right one means PISA ISA.

Both of the left and right columns have similar results. That is because (1)
both Alpha and PISA ISA are RISC, and therefore their branch destinations are
determined by one or two registers, and (2) the distance has a close relationship
with the characteristics of programs instead of the instruction sets. Therefore,
to make things simple, in the rest of this paper, we focus on the study of Alpha
ISA and conduct our other experiments on SMTSIM simulator.

In the Figure 2 we can find that the distance of about 15% of branch instruc-
tions and the instruction writing the register which will be used by this branch
is more than 6. To illustrate this point more clearly, let us look a fragment of a
program:
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A. LDL R1, [R2+100]
B. MUL R1, R1, R3
C. MOV R3, R2
D. BEQ R1, Label

Instruction B writes register R1, and branch instruction D use the sign of R1
to determine whether it will go to Label. The distance mentioned above stands
for the number of instructions between B and D. In this example, the distance
is 2.

In a SMT processor, all threads use the same FU; there is a high probability
that some instructions from other threads fit in the slots between instruction B
and D, so the distance of B and D will be more than 2 in this example.

Therefore, in a fetch width is 8 instruction per cycle and 4 threads environ-
ments, if other threads can provide one independent instruction to insert between
the branch and its relied instruction, then when the distance is more than 5 the
destination of this branch can be sure before it is predicted. Similarly, when
there are 8 running threads, when the distance is more than 2 then this branch
is sure. To get the information precisely, we modify the SMTSIM simulator to
record the clean rate in different thread work-loads. When a branch instruction
is in the decode stage of the pipeline, and if the clean bit in WRT is 0, then this
branch instruction is called a clean branch. The clean rate is the percentage of
clean branch instructions to the total branches. We use ICOUNT 2.8 [2] fetch
policy and the results are illustrated in Figure 3.

As the number of threads is increasing, the percentage of clean branches gets
higher and higher. That is because in the SMT processor, some instructions
from different threads that do not affect the operands of the current branch are
inserted into the issue queue. So the distance between the branch and its relied
instructions is enlarged. There are also more chances that the operands are ready
when the branch needs to use them. Figure 5 shows that the percentage is quite
optimistic.

Fig. 3. The relation between clean rate and number of threads
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Fig. 4. The relation between clean rate and
number of threads of mgrid

Fig. 5. The relation between clean rate
and number of threads on average

There is an exception program, mgrid. Because there are not enough branches
in this program, we get a very positive result (Figure 4). However, to be more ac-
curate, we eliminate this program and the average result is illustrated in Figure 5.

Figure 5 shows that when there are 2 running threads, the clean rate is lowest,
that is because the clean rates of some float benchmarks decline significantly.
And when the number of running threads is more than 2, the clean rates get
higher and higher as thread number is increasing. Particularly, when there are
eight threads, the clean rate is 19.57%. Considerably, if we eliminate such branch
instruction from mis-prediction, then the rate can be higher. For instance, when
we use a predictor which is 90% correct, by using this scheme in Figure 1, we
can increase the prediction to 91.96% (19.57%*(1-90%)+90%).

4.3 Branch Prediction Miss Rate

We implemented our scheme with g-share and bi-modal and called them g-
share WRT and bi-modal WRT respectively. We compare the mis-prediction
rate among 4K g-share, 4K g-share with WRT, and 4.5K bi-modal, and the
results are as illustrated in Figure 6.

As mentioned before, WRT is not a predictor. It can be used as a complemen-
tary of any predictor to improve the prediction accuracy. In Figure 6, we know

Fig. 6. Branch prediction miss rate Fig. 7. Wrong Path instruction fetch rates
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Fig. 8. Enhanced rate of prediction and
wrong path fetch

Fig. 9. Instruction throughput of our
scheme and g-share predictor

that our scheme can improve the original predictor effectively no matter what
the predictor is.

In Figure 8, we show the relationship between the number of threads and the
enhancement of prediction. It is clear that the more running threads, the more
benefit we can get from our bypass scheme. Furthermore, when the threads num-
ber increases from 2 to 4, the enhancement is higher than others. This illustrates
that when there are only 2 running threads, the independent instructions are in-
sufficient to insert between the conditional branch and the relied instruction.
When there are 4 or 6 threads, the independent instructions from other threads
are enough to show the efficiency of our scheme.

4.4 Wrong Path Instruction Fetch Rate

SMT processor can reduce the wrong path fetch rate effectively; in addition,
our scheme can enhance this rate by 6% in 4 threads and 6.7% in 8 threads
situations(Figure 7).

Figure 8 shows that in the 4 threads situation, the improvement of reducing
wrong path fetch rate is most obvious. And the further increase of thread number
has little influence on the enhancement. This indicates to us that we can obtain
higher benefit by increasing from 2 threads to 4.

4.5 Processor Performance

Although the SMT can tolerate the degradation of performance caused by mis-
prediction, our scheme still improves the overall performance by 2.55% on av-
erage. Figure 9 shows the instruction throughput of our scheme compared with
the original g-share predictor.

5 Conclusion

In this paper, we studied the distance of conditional branches and its relied
instructions, and present a bypass mechanism which may be not suitable in
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superscalar processors. With the help of WRT, the accuracy of the original pre-
diction can be improved by 15% percent on average. The implementation of our
predictor is simple, and the hardware cost is little. Execution-driven simulation
results show that our predictor can be more effective as the number of threads
increases.
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Abstract. This paper proposes a novel random replacement method in fully or 
set associative structures such as TLBs to improve the performance of the main 
or high-priority thread running in an SMT processor along with other low-
priority threads. The proposed random replacement technique considers the 
thread priorities when performing a random selection of evicted entries in the 
table. The replacement scheme increases the probability of evicting a low-
priority thread entry by generating more than one random number index. We 
have shown that this simple and low-cost random replacement logic can boost 
the performance of the high-priority thread significantly with only minimal ad-
ditional hardware support. Our results indicate that generating only 3 random 
numbers can increase the performance of the high-priority thread by about 9%, 
and provides the highest overall IPC for an 8-entry data TLB. 

1   Introduction 

Microarchitects prefer to use less costly schemes such as round-robin, not-last-used 
(NLU) or random replacement algorithms for fully or set associative tables/caches, 
particularly in embedded microprocessors because the replacement policies that pro-
vide higher performance such as least recently used (LRU) are hardware-intensive. 

In an SMT processor, the set and fully associative structures such as caches, branch 
target buffers (BTBs) and TLBs are shared by many simultaneous threads. An entry 
belonging to one thread can be evicted by another thread. For instance, the least re-
cently used entry is replaced no matter which thread the entry belongs to when the re-
placement policy is LRU. Similarly, the entry whose index is generated by a random 
number generator is chosen for eviction if the replacement policy is random.  

The replacement policy without differentiating thread priority may not be problem 
for an SMT processor in which all threads have equal priority. However, the situation 
becomes different if the SMT processor has one highest priority and other low priority 
threads. This may be a typical case in a soft/hard real-time system where the highest 
priority thread or the real-time thread is given all resources and other threads are oppor-
tunistic in the sense that they use resources only when the highest priority thread stalls 
for a reason. Ideally, the real-time thread is expected to be delayed minimally by the 
non-real time low-priority threads. When a TLB is shared among all threads in a real-
time SMT processor, a low priority thread replacing a TLB entry belonging to the high-
est priority thread can be detrimental to the performance of the highest priority thread. 



 Thread Priority-Aware Random Replacement in TLBs 377 

The current state-of-art random replacement algorithm, whether it is used in set or 
fully-associative caches or TLBs, selects an entry to be replaced randomly. The prob-
ability of an entry being replaced is equal for all entries, i.e. 1/N for N-entry table. 
However, this kind of random selection may not be appropriate in a real-time SMT 
processor in which one thread has priority over the others. Thus, the probability 
should be higher than 1/N in order to increase the chance of finding a low priority 
thread entry rather than a high priority thread one.  

In this paper, we assume that we have a real-time SMT processor that has one 
highest priority thread which is the real-time task, and all other threads are all low 
priority non-real-time tasks. All threads in the SMT processor share fully-associative 
TLBs that use random replacement policy to evict an entry. We propose an improved 
random replacement policy for associative tables such as caches, TLBs, BTBs and 
etc. However, our focus will be on thread priority-aware random replacement policy 
for fully-associative TLBs. Using this novel random replacement policy, the probabil-
ity of finding a low priority thread entry can be made as high as m/N where m is a de-
sign parameter.  

The structure of the paper is as follows: Section 2 discusses the related work. Sec-
tion 3 explains the rationale behind the thread priority-aware random replacement pol-
icy. Section 4 compares the performance of the thread priority-aware random re-
placement policy to the traditional random replacement policy for fully-associative 
data TLB and attempts to reach a cost-effective design of this new policy. Finally, 
Section 5 summarizes the paper with a discussion of the results and other potential 
applications of our technique. 

2   Related Work 

There is a plethora of studies on SMT where the focus is mainly on improving the 
overall throughput of the processor core [1, 2 and 3]. In these studies, the threads have 
equal priority to share resources and therefore much of the attention has been paid to 
improve the overall processor throughput.  

Dorai et al. [5] investigates resource allocation policies to keep the performance of 
the high-priority thread as high as possible while performing low-priority task along 
with the high-priority thread. High-priority and low-priority thread model is also ex-
plored in Raasch et al. [4] in the context of prioritizing the fetch bandwidth among 
threads. Similarly, Cazorla et al. [6] discusses a technique to improve the perform-
ance of high-priority thread in an SMT processor under the OS control. None of these 
prior art study the performance impact of the replacement policies on shared associa-
tive tables such as TLBs.  

3   Thread Priority-Aware Random Replacement 

Fig. 1 shows a typical random replacement implementation using linear feedback shift 
register (LFSR). Although our scheme can work for any kind of pseudo-random gen-
erator, we use LFSR to illustrate how it works. At every cycle, the LFSR is shifted 
left by an input derived by XORing some of the bits in the register. The replaced entry  
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Replaced Entry #

LFSR
XOR

1     2    3    4    5    6

Index

Generation 

 

Fig. 1. Random replacement using a LFSR 

 

number can simply be derived by reading out some MSB bits from the register. For 
instance, 4 MSB bits are read into the Index Generation logic to generate the replaced 
entry number if the fully associative table has 16 entries.  

This sort of random replacement can be comfortably used in an SMT processor in 
which all threads have equal priority. On the other hand, it does not run efficiently 
when it is used in a real-time SMT processor having one high priority thread and all 
other threads having low priority because each entry in the table has equal probability 
of being replaced. What we really want is to devise a method of increasing the chance 
of picking an entry belonging to a low priority thread rather than the high priority one. 

Generating only one random entry may give accidental replacement of a high pri-
ority thread entry from the fully associative table. However, it may be more likely to 
find a low priority thread for replacement if more than one random entry number is 
generated. In order to support such a mechanism, each entry in the table should be 
identified by its thread information. Fig. 2 shows the Priority Bit Vector (PBV) regis-
ter in conjunction with the fully associative table. For each entry in the table, there is 
a priority bit in PBV. Initially, the PBV register has all zeros. When an entry is being 
written by a high priority thread, the associated bit in PBV register is also set. How-
ever, if the entry is being written by any of the low priority threads, the PBV bit is 
cleared. 

The implementation of thread priority-driven random replacement (PRR) for an N-
entry fully-associative table is shown in Fig. 3. The operation of the LFSR is the same 
as the one above but the number of entries read out of it is more than one. log2(N) bits 
need to be read from LFSR to form an index to N-entry table. m different log2(N)-bit 
portions are read to increase the probability of finding a low-priority thread entry. The 
more such portions are read, the higher the chance of finding a low-priority thread en-
try becomes. Here, m is an implementation-dependent parameter. In order to generate 
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Fig. 2. Priority Bit Vector (PBV) 

 

 

Fig. 3. Priority-driven random replacement (PRR) 

m random numbers, we need m index generation logic (i.e. log2(N)-to-N decoder in 
this particular case). We also need an N-bit PBV register and a multiplexer to select 
the first low priority entry out of m entries.  

m different indices are used to access the PBV register to read m 1-bit thread prior-
ity information associated with the randomly selected entry. Then, these m 1-bit  

LFSR
XOR

0     1 

Index
Generation 

0

Index
Generation

1

Index
Generation

m

N-bit PBV

m-bit selector
N-entry Fully 
Associative 

Table

N-bit entry # N-bit entry # N-bit entry #

log2N-bit

M
U

Xm potential 
N-bit replacement

indices an N-bit 
replaced index

log2N-bit

 



380 E. Özer and S. Biles 

information is fed into the multiplexer that selects the first low-priority entry number 
from left to right. The selected entry is the entry to be replaced from the table. If there 
is no low priority entry out of m randomly selected entries, then the first high priority 
entry from left will be the entry to be replaced.  

Even though the table may have some entries belonging to a low priority thread, 
this scheme may still select an entry that belongs to a high priority thread. For  
instance, all m indices can point to entries that belong to a high priority thread. How-
ever, it can be very likely to find an entry belonging to a low priority thread for  
replacement if m is large enough. 

4   Experimental Results 

We have implemented this idea for a fully associative micro data TLB (DTLB) table 
in an ARM processor designed as a 2-thread SMT core in which one thread has the 
highest priority over the other one. Both threads share the same DTLB. The baseline 
or original TLB uses traditional random replacement policy. For PRR, we vary the 
number of randomly generated indices from 2 to 8.  

Table 1. ARM-SMT processor parameters used in the simulation 

Parameters Details 
Processor type In-order superscalar 
Issue width Dual-issue  
Fetch bandwidth 2 32-bit or 4 16-bit instruction fetch per 

cycle 
Decode bandwidth 2 instructions per cycle 
# of Threads 2 
Virtually-indexed Physically-tagged 
On-chip L1 Instruction Cache 

4-way 32KB with 1-cycle hit time 

Virtually-indexed Physically-tagged 
On-chip L1 Data Cache 

4-way 32KB with 1-cycle hit time 

Physical On-chip L2 Unified Cache 8-way 256KB with 8-cycle hit time 
Memory Access Latency 60 cycles 
Data TLB size 8-entry fully-associative with random 

replacement 
Instruction TLB size 32-entry fully-associative random re-

placement 
Branch Predictor 4096-entry Global Branch Predictor 

 
We have performed a cycle-accurate simulation of an SMT implementation of an 

ARMv7 architecture-compliant processor using the EEMBC [7] benchmark suite. The 
processor is modeled as a 2-thread soft real-time SMT core in which one thread is the 
dedicated HP thread, and the other one becoming the LP thread. The HP thread has 
priority using the fetch, decode and issue resources over the LP thread in the SMT 
model. We have used 18 benchmarks from the EEMBC benchmark suite covering a 
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Fig. 4. The simulated ARM-SMT processor-memory model 

wide range of embedded applications including consumer, automotive, telecommuni-
cations and DSP. We run all possible dual-thread permutations of these benchmarks. A 
dual-thread simulation run completes when the HP thread finishes its execution, and 
then we collect the required statistics. The ARM-SMT processor core and memory 
model parameters are shown in Table 1. The processor-memory model of the simu-
lated ARM-SMT model is shown in Fig. 4. The instruction and data caches are virtu-
ally-indexed physically-tagged caches. While the set portion of the virtual address is 
indexing the instruction or data cache, the virtual tag portion is translated into the 
physical tag by the instruction or data TLB at the same time. Thus, the performance of 
the instruction and data TLB is critical to sustain a high HP thread performance. 

We have measured 3 metrics to compare the performance of the PRR to the origi-
nal random replacement: 1) Speedup of the highest priority thread, 2) CPI of the low-
est priority thread, and finally 3) the total IPC. As the highest priority (HP) thread has 
the priority to use all processor resources over the other thread, any optimization on a 
shared processor resource will shorten its execution time because there will be some  
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improvement in the DTLB hit rate of the HP thread. Thus, measuring the speedup 
relative to the baseline is a sensible metric. By nature, the PRR scheme will reduce 
the DTLB hit rate of the low priority (LP) thread as the scheme is inclined to evict an 
LP entry from the DTLB. Therefore, we need to measure how this decline in the 
DTLB hit rate in LP thread affects its overall performance. Thus, we measure the CPI 
of the LP thread under SMT for both baseline and the PRR scheme. Finally, the total 
IPC of the processor allows us to measure the total throughput of the processor with 
respect to the varying number of randomly-generated indices. 

All measurements are done for an 8-entry fully-associative DTLB. We choose  
8-entry data TLB to stress it out aggressively as the EEMBC benchmarks are, in general, 
kernel programs that do not put pressure on relatively large data TLBs (e.g. 32-entry).  

 

 
Fig. 5. Distribution of DTLB evictions by LP thread 

We plot the distribution of DTLB misses caused by LP thread in Fig. 5. The first 
column in the x-axis is the baseline random replacement policy, and the randomly-
generated indices vary from 2 to 8 for the PRR scheme. Each column consists of two 
portions. The bottom portion represents the percentage of DTLB evictions performed 
by LP thread in which the HP entry is replaced by an LP entry. The top portion repre-
sents the percentage of DTLB self-evictions by LP thread. In baseline or traditional 
random replacement policy, almost half of the DTLB misses caused by LP thread 
evicting HP thread entries. When the PRR scheme is used, the distribution is skewed 
in favour of the top portion, which is the percentage of self-LP evicts as the number of 
random indices increases. This means that the percentage of LP thread evicting HP 
TLB entries is decreasing when more random numbers are drawn from the LFSR to 
select a victim. The percentages of LP evicting HP TLB entries are 50%, 35%, 27%, 
22%, 19%, 16%, 14% and 12% for 1, 2, 3, 4, 5, 6, 7 and 8 indices, respectively.  
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Fig. 6. HP thread speedup 

Fig. 6 shows the speedup of the HP thread in a processor using the PRR scheme 
with varying number of randomly-generated indices relative to the same processor us-
ing the baseline random replacement scheme. 

 

 
Fig. 7. CPI of the LP thread 

 

The slope of the curve ramps up to 3 indices and gradually declines thereafter. This 
means that generating 3 or more random indices still improves the performance of the 
HP thread but the rate of improvement slows down. The reason for this drop in the 
rate of improvement is that the probabilities of finding a low-priority victim entry be-
come very close after 3 or more random numbers. The actual speedup values are  
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Fig. 8. Total IPC of the 2-thread SMT processor 

6.1%, 8.7%, 10%, 10.9%, 11.6%, 12.1% and 12.5% for 2, 3, 4, 5, 6, 7 and 8 indi-
ces, respectively.  

Fig. 7 shows the CPI of the LP thread for the original random replacement as well 
as the varying sizes of the PRR scheme. The CPI of the LP thread for the baseline 
random replacement is about 4, which means that it can commit an instruction at 
every 4 cycles. In contrast, the LP thread in the PRR scheme commits an instruction 
at every 5 cycles up to 4 indices. This is only 1 cycle worse than the original random 
scheme due to decline in the DTLB hit rate of the LP thread. Thereafter, the CPI is in-
creased by one more cycle and becomes 6 for 5 or more random indices.  

Finally, Fig. 8 shows the total IPC or throughput of the SMT processor core for all 
schemes. Although the changes in IPC numbers are quite small, it is important to ex-
plain the underlying behaviour of this graph rather than providing IPC quantities. The 
baseline random replacement scheme has the lowest IPC. As the randomly-generated 
indices in PRR increase, so does the total IPC up to 3 indices. After 3 indices, the total 
IPC starts declining. With reference to Fig. 6, the slope of the HP thread speedup drops 
after 3 entries (i.e. the execution time reduction rate slows down), and also the CPI of 
the LP thread increases steadily as the number of randomly-generated indices increases 
(i.e. fewer number of LP instructions can be committed per cycle). The aggregate effect 
of these two factors is the decline of the total IPC as seen in Fig. 8 after 3 indices. 

5   Discussion and Conclusion  

We have shown that the optimal number of randomly-generated indices lies between 
2 and 4 when considering the high-priority thread speedup, the total instruction 
throughput and the hardware cost of the replacement scheme. For instance, it acceler-
ates the high-priority thread by about 9% and improves the total instruction through-
put by 1% at a cost of 2 extra decoders, the priority vector register and a multiplexer 
for 3 randomly-generated indices shown in Fig. 9. 
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Fig. 9. Low-cost high-performance implementation of 3-index PRR scheme 

In this paper, we have proposed a novel random replacement policy for fully or set 
associative structures such as TLBs to improve the performance of the main or high-
priority thread running in an SMT processor along with other low-priority threads. 
The novel random replacement policy is thread-aware and picks up the first low-
priority thread entry index out of many randomly-generated index numbers as a vic-
tim entry. 

Although we apply this novel technique to TLBs, it could be just as well applied to 
any associative structures (e.g. L1 and L2 caches, branch target buffers and etc.) that 
use random replacement policy.  

In this paper, we apply this technique in a dual-thread SMT processor but it can 
also be used in an SMT processor with more than 2 threads. Running several simulta-
neous LP threads increases the chance of replacing an HP thread entry if the tradi-
tional random replacement is used in a soft real-time SMT processor with one HP and 
multiple LP threads. However, the priority-driven random replacement could signifi-
cantly improve the performance of the HP thread in the same processor model. 
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Abstract. Object-oriented programming has become a major trend in software 
development for large-scale software systems. However, the classic von 
Neumann architecture machines have certain limitations for object-oriented 
computing, such as system security and overhead. To address these limitations, 
architectural support on object-oriented programming has been introduced. In 
this paper, an architectural solution to object-oriented programming in a Java 
processor named jHISC is described, where a new object representation model 
is mapped into hardware directly and the object-oriented programming features 
is implemented through controlling the related fields in the object context. 
Moreover, the object representation model is designed to access object 
information in parallel to speed up object-oriented operation. Compared with 
PicoJava II, JOP, JDK1.5.0_05 interpreter and HotSpot JIT compiler, it has a 
great improvement on execution of Java programs. 

Keywords: Java, Java processor, Object-oriented programming. 

1   Introduction 

Ever since the introduction of computer, hardware has become increasingly smaller, 
faster, and cheaper, whereas software has become larger, slower, and more expensive 
to build and maintain. Especially, with the rapid development of network and Internet, 
there is a high demand for developing highly reliable and easily maintainable 
application programs in a wide range of application domains. Object-oriented 
programming (OOP) has become firmly established as the methodology of choice for 
developing new systems due to its advantages, such as reusability, maintainability, 
flexibility and modularity. Object-oriented programming facilitates its advantages 
through introducing data encapsulation, information hiding, object inheritance, and 
polymorphism, thus it enhances the quality of software and reducing the software 
development cost, especially when amortized over several iterations. Currently, 
object-oriented programming has become a major trend in software development for 
large-scale software systems. 
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Object-oriented programming is supported through compilation or virtual machine 
in classic von Neumann architecture machines. In the compilation approach, an 
application written in an object-oriented programming language, such as C++, is 
compiled into the executable native instructions. At the same time, a process will be 
created for the execution of the program. Different applications are executed in their 
own addressing spaces, and they are invisible from each other by using virtual 
memory system. Security protection mechanism is normally implemented with page 
or segment table, where access right information is maintained.  

In the virtual machine approach, a virtual machine is built on the top of operating 
system. The related object-oriented applications are executed through software 
emulation in the virtual machine. During execution, the virtual machine executes all 
the object operations, such as object creation, object communication, dynamic object 
linking, class loading, and so on. 

However, the classic von Neumann architecture machines have certain limitations 
for object-oriented computing. In the classic von Neumann architecture machines, a 
word can be treated as either an instruction or datum because no specific semantics 
associated with the contents of each word, therefore the system is easy to be attacked. 
To improve security, most object-oriented programming languages introduce data 
type and access right checks when data are accessed. However, the von Neumann 
architecture machines do not provide instructions to manipulate objects and simply 
retrieve the representations of objects from data. Therefore, although a secure object-
oriented system is used, a machine-code programmer could directly access data and 
misinterpret or corrupt the secure objects. For example, viruses can access data 
directly through load/store instructions, cast them into memory addresses, and corrupt 
the host system by operating the data stored in the addresses. 

On the other hand, because hardware does not support data type and access right 
checks provided by object-oriented programming languages, such checks impose 
considerable overhead. For example, in the compilation approach, some code will be 
inserted to perform these checks, which will slow down the program execution. 
Although in the virtual machine approach, these checks can be performed by the 
virtual machine, two layers of software: virtual machine and operating system, 
introduce large overhead to system. Moreover, the object-oriented operations are 
executed through software emulation, which will slow down the execution. 

To address these limitations, architectural support on object-oriented programming 
has been introduced, where object operations were carried out directly by an object-
oriented processor. Objects are managed by the object-oriented operating system with 
the protection features offered by the object-oriented processor. Therefore, object 
manipulation becomes more direct and secure. In this paper, architectural support on 
object-oriented programming in a Java processor is introduced. The rest of this paper 
is structured as follows. The previous related work on object-oriented processors is 
discussed in Section 2. Object representation model is described in Section 3. The 
implementation of object-oriented programming features is introduced in Section 4. 
The results of system performance estimation are presented in Section 5. Finally, 
conclusions are made in Section 6. 
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2   Related Work 

Various solutions to architectural support on object-oriented programming have been 
provided in many previous machines. The Intel iAPX432 was the first commercial 
object-oriented architecture [1], which provided hardware support for data hiding, 
methods, inheritance, late binding and access protection. Despite these advanced 
features, it was sometimes from 2 to 23 times slower than an 8086 [2]. One reason is 
due to the architectural limitations, such as the lack of local data registers or a data 
cache, the fault-tolerant and asynchronous bus/memory interface which resulted in 
25% to 40% of the access time consumed by wait state, and so on. Another main 
reason comes from object orientation, especially procedure calls and returns [3]. On 
the iAPX432, when an object is accessed, the capability specifier selects an access 
descriptor which contains access rights information and indices to retrieve the object 
descriptor from object tables. The object descriptor contains the base address and 
length of the referenced object [4]. The object-oriented operations are expensive 
because they need to maintain and traverse more complex addressing information 
obtained through table lookup, for example, a procedure call references memory 40 
times and consumes 724 clock cycles altogether on the iAPX432 [3]. 

To improve the architectural support on object orientation, some techniques have 
been proposed. The SOAR architecture [5], which was based on RISC architecture 
and targeted Smalltalk programming language, employed register sets to hold data, 
and cached the destination addresses of objects to reduce table lookup during object-
oriented operations. It also tagged words to distinguish integers and pointers to 
support generational garbage collection. The Caltech Object Machine (COM) [6], 
which was oriented to the late binding object-oriented programming languages, 
provided hardware method lookup and maintained addressing information in an 
associative context cache to speed up object-oriented operations. Moreover, an 
instruction translation look-aside buffer was used to translate a message name to a 
method address. The MUSHROOM architecture [7] absorbed some techniques 
proposed before, such as tagged memory and parallel tag-checking, register windows. 
In addition, it provided an object-based virtual memory system to support garbage 
collection and employed a novel object cache to maintain the real address information 
of object. REKURSIV processor [12] offered an object-oriented memory 
management unit to swap objects in and out of memory as needed because objects 
were represented directly and mapped into a persistent storage.  

There are many object-oriented processors for certain object-oriented programming 
languages. PicoJava II, developed by Sun Microsystems, targeted Java programming 
language and mainly performed object-oriented operations by software traps or 
microcode [8]. Anthony Fong proposed HISC architecture [13], which extended 
typical computer architecture to support object-oriented programming at the hardware 
level by introducing 128-bit operand descriptors to describe both object references 
and variables. In this paper, architectural support on object-oriented programming in a 
Java processor named jHISC is introduced. In jHISC, object is represented and 
mapped into hardware directly. And the object representation model is designed to 
access object information in parallel to speed up object-oriented operation.  
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3   Object Representation Model 

An object consists of many fields in object-oriented programming system. Object 
representation model is critical because of its significant impact on the speed of 
accessing object. In general, to minimize the storage overhead, the object header is as 
small as possible and contains sufficient information about the object. Moreover, 
system should locate object fields quickly through an object reference.  

Inside an object, when a field is accessed, the base reference of the object firstly 
needs to obtain; then a field offset and some other information, such as access right, 
field type, etc., are needed. Once all the security and data type checks are passed, the 
field can then be accessed. All these depend on the object representation model and 
may be done serially or parallel. For example, in the stack-based implementation of a 
Java virtual machine, such as JDK1.0 and JDK1.1, they are done serially, which in 
turn affects the execution speed of Java programs. In jHISC, three kinds of contexts, 
namely instance, class, and method contexts, are mapped into the hardware 
architecture to represent different objects. The different object context structures and 
their relations are shown in Fig. 1. 

 

Fig. 1. Different object structures and their relations 

Except the object header (OH), an instance context includes Instance Header (IH) 
and Instance Data Space (IDS); a class context consists of Class Header (CH), Class 
Operand Descriptor Table (CODT), Class Property Descriptor Table (CPDT) and 
Class Data Space (CDS); a method context contains Method Header (MH), Method 
Code Space (MCS) and Local Variable Frame (LVF) for local variable storage. When 
an instance context is used to represent and array, it contains the Array data, which 
locates under the Instance Header. Inside the class context, CODT and CPDT store 
the class operand descriptors and class property descriptors, respectively. Different 
objects are recognized by the object header which format is shown in Fig. 2. 
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Fig. 2. Format of an object header 

Inside the object header, the object type is stored in the field ObjType, such as 
method, instance, class and array; the field DSSize specifies the size of related data 
space, such as IDS, CDS; the field GCInfo stores information for hardware-based 
real-time garbage collections; the field Class holds a direct reference address to link 
an instance object with its affiliated class; the field Lock is used for multithreading; 
when the object is an array, the field ArraySize and ArrayType define the number and 
type of the elements in an array, respectively. 

Each object has a unique object context and a reference always points to the base 
address of object header after the object is resolved. In an object context, all 
components are stored continuously with each having a constant address offset to the 
object header, thus allowing the access of some components in parallel to reduce the 
access overhead. When an object is accessed, the related operand descriptor is read 
from the operand descriptor table to verify whether the object is resolved or not, then 
the specific object header is accessed through the direct address pointer stored in the 
CDS of current class. Along with the object accessing, the bound control checks, such 
as access permission, boundary and data type, are also carried out by hardware. 
Moreover, both class variables and instance variables are stored in the related data 
spaces, therefore they are accessed by their references directly and not accessed 
through an intermediate object handle as Sun’s JDK 1.0 and 1.1. 

3.1   Descriptor Format  

In jHISC, 32-bit operand descriptor stores information about variables or references. 
Its uniform format is shown in Fig. 3, which consists of Address Field, Type Field, 
Static Flag, Access Modifier, Read-Only Flag, and Resolved Flag. Address Field 
provides byte offset to locate data in the corresponding data space. Access Modifier is 
used for security control, such as public, private, protect, and so on. TypeField stores 
the type of described data and eight types are defined for both primitive and reference 
types. Static Flag indicates where data are stored. For the non-static fields, their 
values are stored inside the Instance Data Space (IDS) while they are stored inside the 
Class Data Space (CDS) for the static fields. Read-Only Flag represents whether the 
target can be written or not. Resolved Flag indicates whether the reference is resolved 
or not. If not, the system will be trapped to the operating system routines for dynamic 
reference resolution. 
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Fig. 3. Operand descriptor format 

Two kinds of operand descriptors, class operand descriptor and class property 
descriptor, are defined to assert the resources accessed by the class and the properties 
owned by the class, respectively. Normally, a class operand descriptor contains the 
Address Field, Type Field and Resolved Flag while only the Resolved Flag are not 
included in a class property descriptor. 

4   Implementation of Object-Oriented Programming Features 

Object-oriented programming has four key features distinguished with other 
programming paradigms, namely data abstraction and encapsulation, inheritance, and 
polymorphism. In jHISC, the object-oriented programming features are implemented 
by mapping the object representation model into hardware and controlling the 
corresponding fields into the object context, such as CPDT, CODT, CDS, etc. In this 
section, how to implement the key features of object-oriented programming is 
discussed. 

4.1   Data Abstraction and Encapsulation 

Data abstraction denotes the essential characteristics of an object that distinguishes it 
from others. Data encapsulation hides all the implementation details of an  
object inside the class definition while presenting a well-defined interface to the 
outside world via the class’s methods. Moreover, data encapsulation provides the 
additional access control mechanism to ensure data to be accessed legally and  
safely. In jHISC, data are described by operand descriptors and their values or 
reference addresses are stored in the related data space (i.e. IDS, CDS, MCS and 
Array data). In a class object, its properties and the accessed resources are described 
by the class property descriptors and class operand descriptors, respectively. The 
references of other objects or variable values are stored in the class data space (CDS). 
For an instance object, the instance data are stored in the instance data space (IDS) 
directly. For an array object, the values of array elements are stored in the array data 
area. For a method object, the bytecode instructions are stored in the method code 
space (MCS). In the operand descriptors of an object, the field Access Modifier 
defines the access rights. Before a program accesses an object, it needs to pass the 
bound access control and data type checks. Unauthorized or malicious accesses are 
prohibited. 
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4.2   Inheritance 

Inheritance allows a subclass to share the properties of its superclass to provide a 
mechanism for code sharing and reuse so that the programming development effort is 
reduced. A subclass may select which properties of its superclass to inherit. It may 
also extend its superclass by adding new properties and selectively overriding the 
existing properties of its superclass, which allows the subclass to be specialized and 
the superclass to be generalized [9][10]. In jHISC, variables and methods belonging 
to a class are described by the property descriptors, which reside in the CPDT of the 
class context. The inheritance feature will be implemented by appending the inherited 
properties from the superclass and the related addresses into the CPDT and CDS of 
the subclass context, respectively. 

In the example shown in Fig.4, the class ParentClass contains four integer 
variables, a, b, c, d and two methods, Method_A() and Method_B(). The class 
ChildClass extends from the class ParentClass. The corresponding object context 
structures are shown in Fig. 5. 

 

Fig. 4. A Java example about inheritance 

In Fig. 5, all the methods and variables in the class ParentClass are inherited to the 
subclass ChildClass. The method code spaces of the inherited methods are shared 
between the two classes and only the method Method_C() is created for the subclass 
ChildClass specifically. For the static variable d, a direct address is stored in the CDS 
of class ChildClass, which points to the address where d is stored. 

Two special cases, method overloading and overriding, are met in inheritance. 
Method overloading allows two methods to have the same names, but with different 
signatures. In jHISC, the overloaded method is treated as a new method added to the 
subclass. Thus the related operand property descriptor and direct address about the 
overloaded method are appended to the end of the CPDT and CDS in the object 
context of subclass, respectively. 

In the case of method overriding, a subclass redefines the methods or variables 
inherited from its superclass. In jHISC, the overridden method reserves the descriptor 

class ParentClass 
{ 
    public int a, b, c; 
    public static int d; 
    public void Method_A() { 
           } 
    public void Method_B() { 
        } 
} 
class ChildClass extends ParentClass { 
       public void Method_C() { 
          } 
     . 
} 
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in the same position in the superclass context, but the related descriptor in the 
subclass context is replaced by a new one. When a variable is declared as a different 
type in the subclass, the overridden variable is treated as a new variable in the 
subclass. 
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Fig. 5. Object context and relations in inheritance 

4.3   Polymorphism 

Polymorphism allows many types to be treated as if they were one type, and a single 
piece of code to work on all those different types equally. It is supported by dynamically 
binding an object to the appropriate method, but the actual binding occurs at runtime. In a 
Java program about polymorphism shown in Fig. 6, the class Shape establishes a common 
interface to any class inherited from it. The derived classes override these definitions to 
provide unique behavior for each specific type of shape, which causes that the method 
draw() is defined in the classes Shape, Circle and Square, and each of them has its own 
implementation. In the class Shapes, the polymorphic method draw() is invoked.  

In jHISC, Polymorphism is performed by the resolution process and the 
corresponding object contexts and their relations are shown in Fig. 7. When the 
method main() is invoked, the instances a and b are created with the keyword new and 
the appropriate types (namely Square and Circle). But their instance references are 
upcasted to the Shape. When the method invocation a.draw() is executed, the instance 
a and the field reference Shape.draw() are needed. Since it is the first time to access 
the field reference Shape.draw(), system will trap to the dynamic resolution routine. 
From the instance a, the resolution process finds out that the reference Shape.draw() 
for instance a is bound to the method Square.draw(). The resolution process then sets 
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up the related descriptors, field reference Shape.draw(), and the direct address 
pointing to the object header of class Square. After these, Invocation resumes with the 
resolved references and system executes instructions inside the invoked method. 

When the second method invocation, b.draw(), is executed, system will use the 
same field reference Shape.draw() and the instance b. Because the operand descriptor 
is resolved, no resolution is needed for the field reference Shape.draw(). However, 
during invocation, the access checking finds that the affiliated class of the instance b 
is Circle, and is different with the resolved class reference Shape, which is actually 
pointing to the class Square. Thus it will cause a trap to the resolution routine to find 
whether the class Circle is a subclass of Shape. If yes, the resolution process finishes. 
And the direct address for the field reference Shape.draw() is set up to point to the 
object header of the class Circle, then the execution resumes with the resolved 
reference. If no, an error occurs and exception handler will be performed. 

 

Fig. 6. A Java example about polymorphism 

5   Performance Estimation 

The performance of a processor can be defined as the time to execute a specific 
program, which is the product of three elements: the weighted average number of 
cycles per instruction (CPI), the cycle time and the number of instructions executed. 
We analyzed the distribution of bytecodes in the benchmark JVM98 [14] and clock 

class Shape 
{ 
     public void draw() { 
    } 
} 
class Square extends Shape { 
    public void draw() {      // <-- overridden method 
    } 
    .    // other methods or variables declaration 
 } 
class Circle extends Shape { 
    public void draw() {      // <-- overridden method 
    } 
     .    // other methods or variables declaration 
} 
class Shapes { 
    public static void main(String[] args) { 
        Shape a = new Square();       // <-- upcasting Square to Shape 
        Shape b = new Circle();       // <-- upcasting Circle to Shape 
        a.draw();          // draw a square 
        b.draw();          // draw a circle 
    } 
} 
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cycles needed for the execution of each bytecode, and then normalized them to get the 
weighted average number of cycles per bytecode (CPI) to estimate the system 
performance. The cycles needed by some main object manipulation bytecodes in 
jHISC, PicoJava II and JOP are shown in Table 1. In Table 1, the cycle counts for 
jHISC are based on its RTL model, and for JOP, they are obtained from [11] by 
assuming the number of clock cycles to access memory is one. In PicoJava II, the 
cycles consumed by the original formats of object-oriented related bytecodes are 
estimated by totaling all the clock cycles taken by the relevant bytecodes in the 
software traps, and the cycles needed by the quick variants are quoted from its data 
sheet. We can find that the object-oriented bytecodes are executed much faster in 
jHISC than in PicoJava II and JOP. 
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Table 1. Cycles needed by some object manipulation bytecodes in jHISC, PicoJava II and JOP 

Cycles     Bytecodes in 
PicoJava II Original 

format 
Quick 
variant 

JOP 
Instruction in 
jHISC Cycles 

gfld 6 
getfield 114 4 12 

gifld 2 
pfld 6 

putfield 130 4 15 
pifld 2 

getstatic 103 3 6 gsfld 6 
putstatic 103 3 7 psfld 6 
invokestatic 86 11 67 ivkclass 9 

ivkintance 9 
invokevirtual 195 15 88 

ivkinternal 5 
invokespecial 208 17 67 
invokeinterface 203 184 96 

ivkintance 9 

checkcast 97 6  checkcast 3 
instanceof 100 7  instanceof 4 
ireturn   19    
return 8 17 oo_rvk 5 
areturn   19    
return   19    
iaload      
aaload 5 24 arrayload 3 
caload      
iastore 7 26 arraystore 3 

Table 2 shows the estimation results of CPI in PicoJava II, JOP, jHISC, and 
JDK1.5.0_05, which are obtained through normalizing the distribution of bytecodes in 
the benchmark JVM98 and clock cycles needed for the execution of each bytecode. In 
the table, we choose JDK1.5.0_05 (interpreter mode) as a speedup comparison. We 
observe that jHISC speeds up the overall performance from 0.74 (3.54/2.04-1) to 
11.45 (25.4/2.04-1) times against PicoJava II, 3.18 (8.53/2.04-1) times against JOP, 
 

Table 2. Estimation results of CPI in PicoJava II, JOP, jHISC and JDK1.5.0_05 
 

 CPI 
Relative 

Performance 
Performance 

Improvement 
JDK1.5.0_05 (interpreter mode) 28.58 1 -- 
PicoJava II(original format) 25.40 1.13 13% 
JOP 8.53 3.35 235% 
JDK1.5.0_05 (HotSpot mode) 4.15 6.89 589% 
PicoJava II (quick format) 3.54 8.07 707% 
jHISC  2.04 14.01 1,301% 
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13.01 (28.58/2.04-1) times against JDK1.5.0_05 interpreter and 1.03 (4.15/2.04-1) 
times over JDK1.5.0_05 HotSpot JIT compiler. 

6   Conclusion 

jHISC offers an attractive solution to speed up the Java program execution while 
enforcing the features of object-oriented programming. It is possible to provide 
hardware support on object-oriented programming by controlling the related fields in 
the object context because a new object representation model is used and mapped into 
hardware directly. Moreover, parallel accesses of fields in the object context 
contribute to the execution performance improvement of object-oriented operations.  
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